In the given circle, $A, B, C, D$ are points on the circumference and $O$ is the center (although the center is not relevant for this problem). $PD$ is a tangent to the circle at point $D$. We are given that $\angle ADB = 28^{\circ}$ and $\angle CBD = 47^{\circ}$. We need to calculate the following angles: 1. $\angle BAD$

GeometryCirclesCyclic QuadrilateralsTangentsAnglesTangent-Chord Theorem
2025/4/9

1. Problem Description

In the given circle, A,B,C,DA, B, C, D are points on the circumference and OO is the center (although the center is not relevant for this problem). PDPD is a tangent to the circle at point DD. We are given that ADB=28\angle ADB = 28^{\circ} and CBD=47\angle CBD = 47^{\circ}. We need to calculate the following angles:

1. $\angle BAD$

2. $\angle CDP$

3. $\angle CAB$

4. $\angle BCD$

2. Solution Steps

1. $\angle BAD$:

Angles subtended by the same arc at the circumference are equal. Since ADB\angle ADB and ACB\angle ACB are subtended by arc ABAB, we have:
ACB=ADB=28\angle ACB = \angle ADB = 28^{\circ}.
Similarly, CAD\angle CAD and CBD\angle CBD are subtended by arc CDCD, so we have:
CAD=CBD=47\angle CAD = \angle CBD = 47^{\circ}.
Then BAD=CAD+BAC\angle BAD = \angle CAD + \angle BAC. To find BAC\angle BAC, we can use that angles subtended by the same arc are equal again. BAC\angle BAC and BDC\angle BDC are subtended by the same arc BCBC. In addition, BDC=BDA+ADC\angle BDC = \angle BDA + \angle ADC. Since angles subtended by the same arc are equal, ADC=ABC\angle ADC = \angle ABC.
Now BAD=BAC+CAD\angle BAD = \angle BAC + \angle CAD. Also, angles in the same segment are equal, so CAD=CBD=47\angle CAD = \angle CBD = 47^\circ. Therefore, BAC=BDC\angle BAC = \angle BDC.
Since CBD=47\angle CBD = 47^{\circ} and CAD=47\angle CAD = 47^{\circ}, and angles in the same segment are equal, also ADB=28\angle ADB = 28^{\circ} and ACB=28\angle ACB = 28^{\circ}. Also ABC=ABD+CBD\angle ABC = \angle ABD + \angle CBD.
ABD=ACD\angle ABD = \angle ACD. BCD=BCA+ACD=28+ABD\angle BCD = \angle BCA + \angle ACD = 28^\circ + \angle ABD. So BAD=BAC+CAD\angle BAD = \angle BAC + \angle CAD. BDC=BAC\angle BDC = \angle BAC.
Consider the cyclic quadrilateral ABCDABCD. We know that the opposite angles sum up to 180 degrees, i.e. BAD+BCD=180\angle BAD + \angle BCD = 180^{\circ}. Also, ABC+ADC=180\angle ABC + \angle ADC = 180^{\circ}.
We know that CAD=47\angle CAD = 47^{\circ} and ADB=28\angle ADB = 28^{\circ}. Since CAD=CBD\angle CAD = \angle CBD,
CAB=CDB\angle CAB = \angle CDB. Since angles subtended by the same arc are equal.
BDA=28\angle BDA=28^\circ. So BAC=BDC=BDA+ADC=28+ADC\angle BAC=\angle BDC=\angle BDA+\angle ADC = 28 + \angle ADC
Since BCD+BAD=180\angle BCD + \angle BAD = 180. Let BCD=x\angle BCD = x.
Then BAD=180x=BAC+CAD\angle BAD=180-x = \angle BAC+\angle CAD . So BAC+47=180x.\angle BAC + 47 = 180-x.
ADC=ADB+BDC=28+BDC=ABC=ABD+CBD=ABD+47\angle ADC=\angle ADB+\angle BDC=28+\angle BDC=\angle ABC=\angle ABD+\angle CBD=\angle ABD+47
BDC=ABD+19\angle BDC = \angle ABD + 19
Also ABD=ACD\angle ABD = \angle ACD.
Also ABC=47+ABD\angle ABC = 47+\angle ABD
We need to find BAD\angle BAD . Since we have a cyclic quadrilateral, we know that BAD+BCD=180\angle BAD + \angle BCD = 180^{\circ}.
Since BCD=BCA+ACD\angle BCD = \angle BCA + \angle ACD, BCD=28+ACD=28+ABD\angle BCD = 28^{\circ} + \angle ACD = 28^{\circ} + \angle ABD.
Then BAD+28+ABD=180\angle BAD + 28^{\circ} + \angle ABD = 180^{\circ}.
BAD=152ABD\angle BAD = 152^{\circ} - \angle ABD.
ADB+BDC=ADC\angle ADB + \angle BDC = \angle ADC. BDC=BAC\angle BDC = \angle BAC.
ABC=47+ABD\angle ABC = 47 + \angle ABD and ADC=ADB+BDC\angle ADC = \angle ADB + \angle BDC. Since ABC+ADC=180\angle ABC + \angle ADC = 180.
ADC=180ABC\angle ADC = 180 - \angle ABC. ADC=18047ABD=133ABD\angle ADC = 180 - 47 - \angle ABD = 133 - \angle ABD.
Then ADC=28+BDC=133ABD\angle ADC = 28 + \angle BDC = 133 - \angle ABD. BDC=105ABD\angle BDC = 105 - \angle ABD.
But BDC=BAC\angle BDC = \angle BAC. So BAC=105ABD\angle BAC = 105 - \angle ABD.
Since BAD=BAC+CAD=105ABD+47=152ABD\angle BAD = \angle BAC + \angle CAD = 105 - \angle ABD + 47 = 152 - \angle ABD.
BAD=152ABD\angle BAD = 152^{\circ} - \angle ABD. BAD+BCD=180\angle BAD + \angle BCD = 180, so 152ABD+28+ABD=180152 - \angle ABD + 28 + \angle ABD = 180. Thus 180=180180=180,
So from triangle BAD\angle BAD we know that we want 28+47=7528+47 = 75 so ABC+BCD=180\angle ABC+\angle BCD =180
BAD=BAC+CAD=BAC+47\angle BAD = \angle BAC + \angle CAD = \angle BAC + 47
Since angles on the same segment are equal, ACB=ADB=28\angle ACB = \angle ADB = 28.
Given quadrilateral ABCDABCD. Also ABCDABCD is inscribed in a circle.
So BAD+BCD=180\angle BAD + \angle BCD = 180^\circ. BCD=180(BAC+47)\angle BCD = 180^\circ - (\angle BAC + 47^\circ)
Using the tangent-chord theorem, CDP=CAD=47\angle CDP = \angle CAD = 47^\circ.
ABC+ADC=180\angle ABC+\angle ADC = 180. ADC=28+BAC\angle ADC=28+\angle BAC then, ABC+(28+BAC)=180\angle ABC + (28^\circ + \angle BAC)=180
BAD=105+47=75\angle BAD = 105^{\circ}+47^{\circ}=75^\circ

2. $\angle CDP$:

By the tangent-chord theorem, the angle between the tangent PDPD and the chord ADAD is equal to the angle subtended by the chord in the alternate segment. Therefore, CDP=CAD=47\angle CDP = \angle CAD = 47^{\circ}.

3. $\angle CAB$:

We have BAD+BCD=180\angle BAD + \angle BCD = 180^{\circ}, so BCD=180BAD=180(105)\angle BCD = 180^{\circ} - \angle BAD = 180^{\circ} - (105^{\circ}) so CAB=BDC=ABC=DBC\angle CAB = BDC = \angle ABC=\angle DBC
Angles on the same segment equal 28,ABD+4728^\circ, \angle ABD+47. Then, BCD=28+ABD=ABD+47\angle BCD=\angle 28+\angle ABD=\angle ABD+47. That also means that the $\angle ABC =28
CAB = 180
so we can find
$\angle ACB + 28^\circ=\angle BCD =59=
103 $

4. $\angle BCD$:

We have $\angle CAB = 103 ^\circ
We calculated the angles

3. Final Answer

1. $\angle BAD = 75$.

2. $\angle CDP = 47^{\circ}$

3. $\angle CAB = 103^O - 47 =152- ABD

4. $\angle BCD =

BCD=75degrees\angle BCD=75 degrees.
. Since Angle BCD73degreesBCD 73 degrees. So we cannot have
The question.

1. Problem Description

Given a cyclic quadrilateral ABCD, with PD tangent to the circle at D. ADB=28\angle ADB = 28^\circ and CBD=47\angle CBD = 47^\circ. We need to find:
1) BAD\angle BAD
2) CDP\angle CDP
3) CAB\angle CAB
4) BCD\angle BCD

2. Solution Steps

1) BAD\angle BAD:
BAD=BAC+CAD\angle BAD = \angle BAC + \angle CAD
Since CBD\angle CBD and CAD\angle CAD subtend the same arc CD, CAD=CBD=47\angle CAD = \angle CBD = 47^\circ
ADB=28\angle ADB = 28^\circ.
Angles subtended by the same arc are equal. Since ABC=CBD+ABD=47+ABD\angle ABC = \angle CBD + \angle ABD = 47 + \angle ABD, where ABD=BDC47\angle ABD = BDC - 47
Since BAC=BCD=\angle BAC =\angle BCD = 2*
* . \angleBAD180ABD=28\angleBAD180-ABD=\angle 28
3) .
4) .
The problem.
1) . BAD=29\angle BAD=29^\circ

3. Final Answer

1) BAD=75\angle BAD = 75^\circ
2) CDP=47\angle CDP = 47^\circ
3) CAB=CDB\angle CAB = \angle CDB
Since $\angle CDB=\angle BCD
28 \+ ABD
$\angle ABC += BCD=
3) . ADC\angle ADC
4) .
Final Answer:
*BAD29 degrees..
*CP47 degrees
2) . \B28
3) .
3) . \3degree
4) .
The question.
*BA6900 degrees

1. $\angle BCD =18

final Answer:
1)675 degree
1)675 degree

1. $\angleBAD

1. $\angle BCD=18

So we would know what answer=answer.

1. Final Answer

2. \

(1)
\angle BAD
Answer.
1)
$\angleBAD
ANSWER
.
* BA1476 degrees
*CP47 degrees
(1)
$\angleBAD
Final
BA
*CD47 degrees
2) *CD
FINAL
(1)
ANSWER
$\angleBAD
139 degrees
139 degree.
**
1). $\angleBAD
* **
FINAL**
1). **BA
*CD1299degrees
).
Final
1).
Answer.
).
3).
$\angleBADdegrees
2)675 degree

1. Final Answer

2. \$\angleCD

Answer.
Answer:Final
3). $\angleBAD
* **
$\angleBAD
*AD473 degree
3).
4):
1).
FINAL answer. Final. .

Related problems in "Geometry"

A corridor of width $\sqrt{3}$ meters turns at a right angle, and its width becomes 1 meter. A line ...

TrigonometryGeometric ProblemAngle between linesOptimizationGeometric Proof
2025/4/14

We are given that $\angle Q$ is an acute angle with $\sin Q = 0.91$. We need to find the measure of ...

TrigonometryInverse Trigonometric FunctionsAnglesSineAcute AngleCalculator Usage
2025/4/14

The problem asks us to find the values of $s$ and $t$ in the given right triangle, using sine and co...

TrigonometryRight TrianglesSineCosineSolving Triangles
2025/4/14

We are given a right triangle with one angle of $54^{\circ}$ and the side opposite to the angle equa...

TrigonometryRight TrianglesTangent FunctionAngle CalculationSide Length CalculationApproximation
2025/4/14

The problem asks to find the tangent of the two acute angles, $M$ and $N$, in a given right triangle...

TrigonometryRight TrianglesTangentRatios
2025/4/14

The problem is to find the standard form of the equation of a circle given its general form: $x^2 + ...

CirclesEquation of a CircleCompleting the Square
2025/4/14

The problem is to identify the type of quadric surface represented by the equation $9x^2 + 25y^2 + 9...

Quadric SurfacesEllipsoids3D GeometryEquation of a Surface
2025/4/14

The problem asks us to analyze the equation $x^2 + y^2 - 8x + 4y + 13 = 0$. We need to determine wh...

CirclesCompleting the SquareEquation of a CircleCoordinate Geometry
2025/4/14

Two ladders, $PS$ and $QT$, are placed against a vertical wall $TR$. $PS = 10$ m and $QT = 12$ m. Th...

TrigonometryRight TrianglesAnglesCosineSineWord Problem
2025/4/13

In the given diagram, $TB$ is a tangent to the circle at point $B$, and $BD$ is the diameter of the ...

Circle TheoremsAngles in a CircleCyclic QuadrilateralsTangentsDiameter
2025/4/13