The problem requires us to find the first four terms of the binomial expansion of $\sqrt[3]{1+x}$ and then use this expansion to evaluate $\sqrt[3]{9}$ to three decimal places.

AlgebraBinomial TheoremSeries ExpansionApproximationCube Roots
2025/4/13

1. Problem Description

The problem requires us to find the first four terms of the binomial expansion of 1+x3\sqrt[3]{1+x} and then use this expansion to evaluate 93\sqrt[3]{9} to three decimal places.

2. Solution Steps

First, we find the first four terms of the binomial expansion of (1+x)1/3(1+x)^{1/3} using the binomial theorem. The general formula for the binomial expansion is:
(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+...(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ...
In our case, n=1/3n = 1/3. So the first four terms are:
Term 1: 11
Term 2: 13x\frac{1}{3}x
Term 3: (13)(131)2!x2=(13)(23)2x2=19x2\frac{(\frac{1}{3})(\frac{1}{3}-1)}{2!}x^2 = \frac{(\frac{1}{3})(-\frac{2}{3})}{2}x^2 = -\frac{1}{9}x^2
Term 4: (13)(131)(132)3!x3=(13)(23)(53)6x3=10162x3=581x3\frac{(\frac{1}{3})(\frac{1}{3}-1)(\frac{1}{3}-2)}{3!}x^3 = \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{6}x^3 = \frac{10}{162}x^3 = \frac{5}{81}x^3
Therefore, the first four terms of the expansion are:
(1+x)1/31+13x19x2+581x3(1+x)^{1/3} \approx 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3
Now, we want to evaluate 93\sqrt[3]{9}. We can rewrite this as:
93=8+13=8(1+18)3=21+183\sqrt[3]{9} = \sqrt[3]{8+1} = \sqrt[3]{8(1+\frac{1}{8})} = 2\sqrt[3]{1+\frac{1}{8}}
Now, we can use the binomial expansion we found with x=18x = \frac{1}{8}:
21+1832(1+13(18)19(18)2+581(18)3)2\sqrt[3]{1+\frac{1}{8}} \approx 2\left(1 + \frac{1}{3}\left(\frac{1}{8}\right) - \frac{1}{9}\left(\frac{1}{8}\right)^2 + \frac{5}{81}\left(\frac{1}{8}\right)^3\right)
=2(1+12419(64)+581(512))= 2\left(1 + \frac{1}{24} - \frac{1}{9(64)} + \frac{5}{81(512)}\right)
=2(1+1241576+541472)= 2\left(1 + \frac{1}{24} - \frac{1}{576} + \frac{5}{41472}\right)
=2(1+0.041666...0.001736...+0.000120...)= 2\left(1 + 0.041666... - 0.001736... + 0.000120...\right)
=2(1.0416660.001736+0.000120)= 2\left(1.041666 - 0.001736 + 0.000120\right)
=2(1.04005)= 2(1.04005)
=2.08010= 2.08010
Rounding to three decimal places, we get 2.0802.080.

3. Final Answer

2. 080

Related problems in "Algebra"

We are given the inequality $x^2 - 10x + c > 0$. We need to find the range of values for the constan...

Quadratic InequalitiesDiscriminantCompleting the SquareInequalities
2025/4/17

The problem is to solve the equation $5|3-x| - 51 = 4$ for $x$. This involves isolating the absolute...

Absolute Value EquationsSolving Equations
2025/4/17

The problem is to solve the linear equation $4(x - 2) + 5x = 9x + 8$ for $x$.

Linear EquationsSolving Equations
2025/4/17

The problem presents a sequence of numbers: $-6, -7.2, -8.64, -10.368, ...$. We need to determine th...

SequencesGeometric SequenceSeriesFormulaCommon Ratio
2025/4/17

We are given a sequence $(U_n)$ defined by the initial term $U_0 = 1$ and the recursive relation $3U...

SequencesSeriesGeometric SequenceConvergence
2025/4/17

Given the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, we need t...

Linear AlgebraMatricesDeterminantsInverse MatrixSystem of Equations
2025/4/17

We are given a system of two linear equations with two variables, $x$ and $y$. We need to solve for ...

Linear EquationsSystems of EquationsElimination MethodSolving Equations
2025/4/17

Simplify the expression $\frac{4^{x+1} \times 8^{2x}}{2^{x+3}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/4/17

We are asked to simplify the expression $\frac{4^{x+1} \times 8^{2x}}{2^{x+3}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/4/17

We are given a system of two linear equations with two variables, $x$ and $y$. The system is: $\frac...

Linear EquationsSystems of EquationsSolving Equations
2025/4/17