The problem is to evaluate the sum $\sum_{i=4}^{30} 4i$.

ArithmeticSummationArithmetic SeriesSeries
2025/4/14

1. Problem Description

The problem is to evaluate the sum i=4304i\sum_{i=4}^{30} 4i.

2. Solution Steps

The summation i=4304i\sum_{i=4}^{30} 4i can be rewritten as 4i=430i4 \sum_{i=4}^{30} i.
We can use the formula for the sum of the first nn integers:
i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
We can express i=430i\sum_{i=4}^{30} i as i=130ii=13i\sum_{i=1}^{30} i - \sum_{i=1}^{3} i.
Using the formula, i=130i=30(30+1)2=30(31)2=15(31)=465\sum_{i=1}^{30} i = \frac{30(30+1)}{2} = \frac{30(31)}{2} = 15(31) = 465.
And i=13i=3(3+1)2=3(4)2=6\sum_{i=1}^{3} i = \frac{3(3+1)}{2} = \frac{3(4)}{2} = 6.
Therefore, i=430i=4656=459\sum_{i=4}^{30} i = 465 - 6 = 459.
Finally, i=4304i=4i=430i=4(459)=1836\sum_{i=4}^{30} 4i = 4 \sum_{i=4}^{30} i = 4(459) = 1836.

3. Final Answer

1836