The problem asks to find an equivalent expression for $4^{-3}$.

AlgebraExponentsNegative ExponentsSimplificationAlgebraic Manipulation
2025/3/14

1. Problem Description

The problem asks to find an equivalent expression for 434^{-3}.

2. Solution Steps

To solve this problem, we need to remember the rule for negative exponents:
an=1ana^{-n} = \frac{1}{a^n}
Applying this rule to the given expression:
43=1434^{-3} = \frac{1}{4^3}
Now we evaluate 434^3:
43=4×4×4=16×4=644^3 = 4 \times 4 \times 4 = 16 \times 4 = 64
Therefore,
43=1644^{-3} = \frac{1}{64}
The options are:
A. 43=64-4^3 = -64
B. 143=164\frac{1}{4^3} = \frac{1}{64}
C. 134=14\frac{1^3}{4} = \frac{1}{4}
Therefore, option B is the equivalent expression.

3. Final Answer

143\frac{1}{4^3}