We will expand both sides of the equation. Let's start with the left-hand side (LHS):
(1+tanA)2+(1+cotA)2=(1+2tanA+tan2A)+(1+2cotA+cot2A) =2+2tanA+2cotA+tan2A+cot2A Now, let's work with the right-hand side (RHS):
(secA+cscA)2=sec2A+2secAcscA+csc2A We know that sec2A=1+tan2A and csc2A=1+cot2A. Substituting these into the RHS expression, we get: 1+tan2A+2secAcscA+1+cot2A=2+tan2A+cot2A+2secAcscA Now, we need to show that 2tanA+2cotA=2secAcscA. Recall that tanA=cosAsinA, cotA=sinAcosA, secA=cosA1, and cscA=sinA1. So, we have
2tanA+2cotA=2cosAsinA+2sinAcosA=2sinAcosAsin2A+cos2A=2sinAcosA1 Also,
2secAcscA=2cosA1sinA1=2sinAcosA1 Therefore, 2tanA+2cotA=2secAcscA. Substituting this back into the LHS, we have:
2+2tanA+2cotA+tan2A+cot2A=2+tan2A+cot2A+2secAcscA Since LHS = RHS, the identity holds.