Prove the trigonometric identity $(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2$.

GeometryTrigonometryTrigonometric IdentitiesProofs
2025/4/15

1. Problem Description

Prove the trigonometric identity (1+tanA)2+(1+cotA)2=(secA+cscA)2(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2.

2. Solution Steps

We will expand both sides of the equation. Let's start with the left-hand side (LHS):
(1+tanA)2+(1+cotA)2=(1+2tanA+tan2A)+(1+2cotA+cot2A)(1 + \tan A)^2 + (1 + \cot A)^2 = (1 + 2\tan A + \tan^2 A) + (1 + 2\cot A + \cot^2 A)
=2+2tanA+2cotA+tan2A+cot2A= 2 + 2\tan A + 2\cot A + \tan^2 A + \cot^2 A
Now, let's work with the right-hand side (RHS):
(secA+cscA)2=sec2A+2secAcscA+csc2A(\sec A + \csc A)^2 = \sec^2 A + 2\sec A \csc A + \csc^2 A
We know that sec2A=1+tan2A\sec^2 A = 1 + \tan^2 A and csc2A=1+cot2A\csc^2 A = 1 + \cot^2 A. Substituting these into the RHS expression, we get:
1+tan2A+2secAcscA+1+cot2A=2+tan2A+cot2A+2secAcscA1 + \tan^2 A + 2\sec A \csc A + 1 + \cot^2 A = 2 + \tan^2 A + \cot^2 A + 2\sec A \csc A
Now, we need to show that 2tanA+2cotA=2secAcscA2\tan A + 2\cot A = 2\sec A \csc A.
Recall that tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}, cotA=cosAsinA\cot A = \frac{\cos A}{\sin A}, secA=1cosA\sec A = \frac{1}{\cos A}, and cscA=1sinA\csc A = \frac{1}{\sin A}.
So, we have
2tanA+2cotA=2sinAcosA+2cosAsinA=2sin2A+cos2AsinAcosA=21sinAcosA2\tan A + 2\cot A = 2\frac{\sin A}{\cos A} + 2\frac{\cos A}{\sin A} = 2\frac{\sin^2 A + \cos^2 A}{\sin A \cos A} = 2\frac{1}{\sin A \cos A}
Also,
2secAcscA=21cosA1sinA=21sinAcosA2\sec A \csc A = 2\frac{1}{\cos A} \frac{1}{\sin A} = 2\frac{1}{\sin A \cos A}
Therefore, 2tanA+2cotA=2secAcscA2\tan A + 2\cot A = 2\sec A \csc A.
Substituting this back into the LHS, we have:
2+2tanA+2cotA+tan2A+cot2A=2+tan2A+cot2A+2secAcscA2 + 2\tan A + 2\cot A + \tan^2 A + \cot^2 A = 2 + \tan^2 A + \cot^2 A + 2\sec A \csc A
Since LHS = RHS, the identity holds.

3. Final Answer

(1+tanA)2+(1+cotA)2=(secA+cscA)2(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2

Related problems in "Geometry"

Show that $\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \times \vec{b}) \times \vec{a}$.

Vector AlgebraVector Triple ProductVector OperationsCross ProductDot Product
2025/6/17

The problem asks to find the area $S$ of a sector with radius $r = 4$ and arc length $l = 10$.

SectorAreaArc LengthGeometric Formulas
2025/6/17

The problem asks to identify the prism that can be formed from the given nets. We are given four dif...

PrismsNets3D ShapesCubesRectangular PrismsTriangular PrismsCylinders
2025/6/17

The problem asks to identify the prism formed by the given nets. The image shows four nets. The firs...

3D ShapesNetsPrismsCylindersCube
2025/6/17

We are given a triangle with one exterior angle of $130^\circ$ and one interior angle labeled as $x$...

TrianglesAnglesExterior AnglesInterior Angles
2025/6/17

We are given a triangle with two of its angles known. Angle A is $85^\circ$ and angle B is $68^\circ...

TrianglesAngle Sum PropertyLinear Equations
2025/6/17

We are given a circle with center O. CD is a tangent to the circle at point C. Angle CDB is given as...

CircleTangentAnglesAlternate Segment TheoremIsosceles Triangle
2025/6/17

The problem asks us to find the gradient of the line passing through each of the given pairs of poin...

Coordinate GeometrySlopeGradientLinear Equations
2025/6/17

We are given a pentagon with some information about its angles and sides. We need to find the size o...

PolygonsPentagonsAnglesIsosceles Triangle
2025/6/17

We are given a triangle with one exterior angle of $249^\circ$. Two of the interior angles of the tr...

TrianglesInterior AnglesExterior AnglesAngle Sum Property
2025/6/17