Prove the trigonometric identity $(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2$.

GeometryTrigonometryTrigonometric IdentitiesProofs
2025/4/15

1. Problem Description

Prove the trigonometric identity (1+tanA)2+(1+cotA)2=(secA+cscA)2(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2.

2. Solution Steps

We will expand both sides of the equation. Let's start with the left-hand side (LHS):
(1+tanA)2+(1+cotA)2=(1+2tanA+tan2A)+(1+2cotA+cot2A)(1 + \tan A)^2 + (1 + \cot A)^2 = (1 + 2\tan A + \tan^2 A) + (1 + 2\cot A + \cot^2 A)
=2+2tanA+2cotA+tan2A+cot2A= 2 + 2\tan A + 2\cot A + \tan^2 A + \cot^2 A
Now, let's work with the right-hand side (RHS):
(secA+cscA)2=sec2A+2secAcscA+csc2A(\sec A + \csc A)^2 = \sec^2 A + 2\sec A \csc A + \csc^2 A
We know that sec2A=1+tan2A\sec^2 A = 1 + \tan^2 A and csc2A=1+cot2A\csc^2 A = 1 + \cot^2 A. Substituting these into the RHS expression, we get:
1+tan2A+2secAcscA+1+cot2A=2+tan2A+cot2A+2secAcscA1 + \tan^2 A + 2\sec A \csc A + 1 + \cot^2 A = 2 + \tan^2 A + \cot^2 A + 2\sec A \csc A
Now, we need to show that 2tanA+2cotA=2secAcscA2\tan A + 2\cot A = 2\sec A \csc A.
Recall that tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}, cotA=cosAsinA\cot A = \frac{\cos A}{\sin A}, secA=1cosA\sec A = \frac{1}{\cos A}, and cscA=1sinA\csc A = \frac{1}{\sin A}.
So, we have
2tanA+2cotA=2sinAcosA+2cosAsinA=2sin2A+cos2AsinAcosA=21sinAcosA2\tan A + 2\cot A = 2\frac{\sin A}{\cos A} + 2\frac{\cos A}{\sin A} = 2\frac{\sin^2 A + \cos^2 A}{\sin A \cos A} = 2\frac{1}{\sin A \cos A}
Also,
2secAcscA=21cosA1sinA=21sinAcosA2\sec A \csc A = 2\frac{1}{\cos A} \frac{1}{\sin A} = 2\frac{1}{\sin A \cos A}
Therefore, 2tanA+2cotA=2secAcscA2\tan A + 2\cot A = 2\sec A \csc A.
Substituting this back into the LHS, we have:
2+2tanA+2cotA+tan2A+cot2A=2+tan2A+cot2A+2secAcscA2 + 2\tan A + 2\cot A + \tan^2 A + \cot^2 A = 2 + \tan^2 A + \cot^2 A + 2\sec A \csc A
Since LHS = RHS, the identity holds.

3. Final Answer

(1+tanA)2+(1+cotA)2=(secA+cscA)2(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2

Related problems in "Geometry"

The problem asks to place points $A$, $B$, and $C$ on a line $\Delta$ equipped with a Cartesian coor...

Line GeometryCoordinate GeometryPoints on a Line
2025/4/15

The problem asks to place points $A$, $B$, and $C$ on a line $(\Delta)$ given a Cartesian coordinate...

Coordinate GeometryLine SegmentsMidpointParallel Lines
2025/4/15

The problem provides a coordinate plane with three points labeled A, B, and C. The coordinate system...

Coordinate GeometryPointsCoordinate Plane
2025/4/15

We are given a circle with center $O$. A line $AM$ is tangent to the circle at point $A$. Another li...

CircleTangentAnglesTrianglesGeometric Proof
2025/4/15

We are given a circle with center $O$. A line is tangent to the circle at point $K$. Point $T$ is on...

CirclesTangentsAnglesTrianglesGeometric Proofs
2025/4/15

We need to describe and sketch the graphs of the following equations in three-space: Equation 18: $y...

3D GeometryGraphingSurfacesCylindersHyperboloids
2025/4/15

We are asked to identify and describe the graph of the equation $z = \sqrt{16 - x^2 - y^2}$ in three...

3D GeometrySphereHemisphereEquation of a SphereCoordinate Geometry
2025/4/15

The problem is to identify and describe the graph of the equation $z = \sqrt{16 - x^2 - y^2}$ in thr...

3D GeometrySpheresEquations of SurfacesGraphing
2025/4/15

We need to find the measure of angle $MON$ in the given diagram. We know that $AM$ and $AN$ are tang...

Circle GeometryTangentsAnglesQuadrilaterals
2025/4/15

The problem asks us to identify and sketch the graph of each of the given equations in three-space. ...

3D GeometryElliptical CylinderConic SectionsEquation of a Cylinder
2025/4/15