Show that $\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \times \vec{b}) \times \vec{a}$.

GeometryVector AlgebraVector Triple ProductVector OperationsCross ProductDot Product
2025/6/17

1. Problem Description

Show that a×(b×a)=(a×b)×a\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \times \vec{b}) \times \vec{a}.

2. Solution Steps

We will evaluate both sides of the equation separately using the vector triple product identity.
First, consider the left-hand side: a×(b×a)\vec{a} \times (\vec{b} \times \vec{a}).
Using the vector triple product identity:
A×(B×C)=(AC)B(AB)C\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}
Applying this identity to a×(b×a)\vec{a} \times (\vec{b} \times \vec{a}) with A=a\vec{A} = \vec{a}, B=b\vec{B} = \vec{b}, and C=a\vec{C} = \vec{a}, we get:
a×(b×a)=(aa)b(ab)a=a2b(ab)a\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \cdot \vec{a})\vec{b} - (\vec{a} \cdot \vec{b})\vec{a} = |\vec{a}|^2 \vec{b} - (\vec{a} \cdot \vec{b})\vec{a}.
Now consider the right-hand side: (a×b)×a(\vec{a} \times \vec{b}) \times \vec{a}.
Using the vector triple product identity:
(A×B)×C=C×(A×B)=[(CB)A(CA)B]=(CA)B(CB)A(\vec{A} \times \vec{B}) \times \vec{C} = - \vec{C} \times (\vec{A} \times \vec{B}) = -[(\vec{C} \cdot \vec{B})\vec{A} - (\vec{C} \cdot \vec{A})\vec{B}] = (\vec{C} \cdot \vec{A})\vec{B} - (\vec{C} \cdot \vec{B})\vec{A}
Applying this to (a×b)×a(\vec{a} \times \vec{b}) \times \vec{a} with A=a\vec{A} = \vec{a}, B=b\vec{B} = \vec{b}, and C=a\vec{C} = \vec{a}, we get:
(a×b)×a=(aa)b(ab)a=a2b(ab)a(\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \cdot \vec{a})\vec{b} - (\vec{a} \cdot \vec{b})\vec{a} = |\vec{a}|^2 \vec{b} - (\vec{a} \cdot \vec{b})\vec{a}.
Since both sides simplify to the same expression, the equation holds.

3. Final Answer

a×(b×a)=(aa)b(ab)a\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \cdot \vec{a})\vec{b} - (\vec{a} \cdot \vec{b})\vec{a}
(a×b)×a=(aa)b(ab)a(\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \cdot \vec{a})\vec{b} - (\vec{a} \cdot \vec{b})\vec{a}
Therefore, a×(b×a)=(a×b)×a\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \times \vec{b}) \times \vec{a}.

Related problems in "Geometry"

The problem asks to find the area $S$ of a sector with radius $r = 4$ and arc length $l = 10$.

SectorAreaArc LengthGeometric Formulas
2025/6/17

The problem asks to identify the prism that can be formed from the given nets. We are given four dif...

PrismsNets3D ShapesCubesRectangular PrismsTriangular PrismsCylinders
2025/6/17

The problem asks to identify the prism formed by the given nets. The image shows four nets. The firs...

3D ShapesNetsPrismsCylindersCube
2025/6/17

We are given a triangle with one exterior angle of $130^\circ$ and one interior angle labeled as $x$...

TrianglesAnglesExterior AnglesInterior Angles
2025/6/17

We are given a triangle with two of its angles known. Angle A is $85^\circ$ and angle B is $68^\circ...

TrianglesAngle Sum PropertyLinear Equations
2025/6/17

We are given a circle with center O. CD is a tangent to the circle at point C. Angle CDB is given as...

CircleTangentAnglesAlternate Segment TheoremIsosceles Triangle
2025/6/17

The problem asks us to find the gradient of the line passing through each of the given pairs of poin...

Coordinate GeometrySlopeGradientLinear Equations
2025/6/17

We are given a pentagon with some information about its angles and sides. We need to find the size o...

PolygonsPentagonsAnglesIsosceles Triangle
2025/6/17

We are given a triangle with one exterior angle of $249^\circ$. Two of the interior angles of the tr...

TrianglesInterior AnglesExterior AnglesAngle Sum Property
2025/6/17

We are asked to find the size of angle $DAB$ in a quadrilateral $ABCD$. We are given that angle $ADC...

QuadrilateralsAnglesAngle Sum Property
2025/6/17