We will evaluate both sides of the equation separately using the vector triple product identity.
First, consider the left-hand side: a×(b×a). Using the vector triple product identity:
A×(B×C)=(A⋅C)B−(A⋅B)C Applying this identity to a×(b×a) with A=a, B=b, and C=a, we get: a×(b×a)=(a⋅a)b−(a⋅b)a=∣a∣2b−(a⋅b)a. Now consider the right-hand side: (a×b)×a. Using the vector triple product identity:
(A×B)×C=−C×(A×B)=−[(C⋅B)A−(C⋅A)B]=(C⋅A)B−(C⋅B)A Applying this to (a×b)×a with A=a, B=b, and C=a, we get: (a×b)×a=(a⋅a)b−(a⋅b)a=∣a∣2b−(a⋅b)a. Since both sides simplify to the same expression, the equation holds.