Given the function $f(x) = 3x - 2$, find its inverse function $f^{-1}(x)$.

AlgebraInverse FunctionsFunctionsAlgebraic Manipulation
2025/3/14

1. Problem Description

Given the function f(x)=3x2f(x) = 3x - 2, find its inverse function f1(x)f^{-1}(x).

2. Solution Steps

To find the inverse of a function, we can follow these steps:
(1) Replace f(x)f(x) with yy. So, y=3x2y = 3x - 2.
(2) Swap xx and yy. So, x=3y2x = 3y - 2.
(3) Solve for yy in terms of xx.
x=3y2x = 3y - 2
Add 2 to both sides:
x+2=3yx + 2 = 3y
Divide both sides by 3:
y=x+23y = \frac{x + 2}{3}
(4) Replace yy with f1(x)f^{-1}(x). So, f1(x)=x+23f^{-1}(x) = \frac{x + 2}{3}.

3. Final Answer

f1(x)=x+23f^{-1}(x) = \frac{x + 2}{3}