The problem asks us to simplify the following expressions: (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a^3+a^5)$ (f) $m^2(1-m)-2m(m+2m^2)$ (g) $ab(a^2+ab-b^2)$

AlgebraExponentsSimplificationPolynomialsDistributive PropertyPower of a PowerProduct of Powers
2025/4/17

1. Problem Description

The problem asks us to simplify the following expressions:
(b) (x5)3(x^5)^3
(c) (a2b3)4(a^2b^3)^4
(d) a2(a3+a5)a^2(a^3+a^5)
(f) m2(1m)2m(m+2m2)m^2(1-m)-2m(m+2m^2)
(g) ab(a2+abb2)ab(a^2+ab-b^2)

2. Solution Steps

(b) (x5)3(x^5)^3
Using the power of a power rule (xa)b=xab(x^a)^b = x^{a*b}, we get
(x5)3=x53=x15(x^5)^3 = x^{5*3} = x^{15}
(c) (a2b3)4(a^2b^3)^4
Using the power of a product rule (xy)a=xaya(xy)^a = x^a y^a, we have
(a2b3)4=(a2)4(b3)4(a^2b^3)^4 = (a^2)^4(b^3)^4
Using the power of a power rule (xa)b=xab(x^a)^b = x^{a*b}, we have
(a2)4(b3)4=a24b34=a8b12(a^2)^4(b^3)^4 = a^{2*4}b^{3*4} = a^8b^{12}
(d) a2(a3+a5)a^2(a^3+a^5)
Using the distributive property a(b+c)=ab+aca(b+c) = ab+ac, we have
a2(a3+a5)=a2a3+a2a5a^2(a^3+a^5) = a^2a^3+a^2a^5
Using the product of powers rule xaxb=xa+bx^a x^b = x^{a+b}, we have
a2a3+a2a5=a2+3+a2+5=a5+a7a^2a^3+a^2a^5 = a^{2+3}+a^{2+5} = a^5+a^7
(f) m2(1m)2m(m+2m2)m^2(1-m)-2m(m+2m^2)
Using the distributive property a(b+c)=ab+aca(b+c) = ab+ac, we have
m2(1m)=m2m3m^2(1-m) = m^2 - m^3
2m(m+2m2)=2m24m3-2m(m+2m^2) = -2m^2-4m^3
Thus, we have
m2(1m)2m(m+2m2)=m2m32m24m3=m22m2m34m3=m25m3m^2(1-m)-2m(m+2m^2) = m^2-m^3-2m^2-4m^3 = m^2-2m^2-m^3-4m^3 = -m^2-5m^3
(g) ab(a2+abb2)ab(a^2+ab-b^2)
Using the distributive property a(b+c+d)=ab+ac+ada(b+c+d) = ab+ac+ad, we have
ab(a2+abb2)=aba2+ab(ab)ab(b2)ab(a^2+ab-b^2) = aba^2+ab(ab)-ab(b^2)
Using the product of powers rule xaxb=xa+bx^a x^b = x^{a+b}, we have
aba2+ab(ab)ab(b2)=a3b+a2b2ab3aba^2+ab(ab)-ab(b^2) = a^3b+a^2b^2-ab^3

3. Final Answer

(b) x15x^{15}
(c) a8b12a^8b^{12}
(d) a5+a7a^5+a^7
(f) m25m3-m^2-5m^3
(g) a3b+a2b2ab3a^3b+a^2b^2-ab^3

Related problems in "Algebra"

Solve the equation $3^{2x} - 30 = 3^x$.

Exponential EquationsQuadratic EquationsLogarithmsChange of Base
2025/4/18

The problem is to solve the system of two equations: $b = -a$ $-12 = -6a$ for the variables $a$ and ...

Linear EquationsSystem of EquationsSolving Equations
2025/4/17

We are given the inequality $x^2 - 10x + c > 0$. We need to find the range of values for the constan...

Quadratic InequalitiesDiscriminantCompleting the SquareInequalities
2025/4/17

The problem is to solve the equation $5|3-x| - 51 = 4$ for $x$. This involves isolating the absolute...

Absolute Value EquationsSolving Equations
2025/4/17

The problem is to solve the linear equation $4(x - 2) + 5x = 9x + 8$ for $x$.

Linear EquationsSolving Equations
2025/4/17

The problem presents a sequence of numbers: $-6, -7.2, -8.64, -10.368, ...$. We need to determine th...

SequencesGeometric SequenceSeriesFormulaCommon Ratio
2025/4/17

We are given a sequence $(U_n)$ defined by the initial term $U_0 = 1$ and the recursive relation $3U...

SequencesSeriesGeometric SequenceConvergence
2025/4/17

Given the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, we need t...

Linear AlgebraMatricesDeterminantsInverse MatrixSystem of Equations
2025/4/17

We are given a system of two linear equations with two variables, $x$ and $y$. We need to solve for ...

Linear EquationsSystems of EquationsElimination MethodSolving Equations
2025/4/17

Simplify the expression $\frac{4^{x+1} \times 8^{2x}}{2^{x+3}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/4/17