The problem has two parts: (a) Simplify the expression $\frac{x^2 - 8x + 16}{x^2 - 7x + 12}$. (b) Given that $\frac{1}{2}$, $\frac{1}{x}$, and $\frac{1}{3}$ are successive terms of an arithmetic progression (A.P.), show that $\frac{2-x}{x-3} = \frac{2}{3}$.

AlgebraAlgebraic SimplificationArithmetic ProgressionFactorizationEquations
2025/4/21

1. Problem Description

The problem has two parts:
(a) Simplify the expression x28x+16x27x+12\frac{x^2 - 8x + 16}{x^2 - 7x + 12}.
(b) Given that 12\frac{1}{2}, 1x\frac{1}{x}, and 13\frac{1}{3} are successive terms of an arithmetic progression (A.P.), show that 2xx3=23\frac{2-x}{x-3} = \frac{2}{3}.

2. Solution Steps

(a) Simplify x28x+16x27x+12\frac{x^2 - 8x + 16}{x^2 - 7x + 12}.
First, we factor the numerator and the denominator.
x28x+16=(x4)(x4)=(x4)2x^2 - 8x + 16 = (x - 4)(x - 4) = (x - 4)^2
x27x+12=(x3)(x4)x^2 - 7x + 12 = (x - 3)(x - 4)
Therefore,
x28x+16x27x+12=(x4)2(x3)(x4)=x4x3\frac{x^2 - 8x + 16}{x^2 - 7x + 12} = \frac{(x - 4)^2}{(x - 3)(x - 4)} = \frac{x - 4}{x - 3} for x4x \neq 4.
(b) Given that 12\frac{1}{2}, 1x\frac{1}{x}, and 13\frac{1}{3} are successive terms of an arithmetic progression. In an A.P., the difference between consecutive terms is constant.
Thus,
1x12=131x\frac{1}{x} - \frac{1}{2} = \frac{1}{3} - \frac{1}{x}
2x=12+13=3+26=56\frac{2}{x} = \frac{1}{2} + \frac{1}{3} = \frac{3 + 2}{6} = \frac{5}{6}
x=265=125x = \frac{2 \cdot 6}{5} = \frac{12}{5}
Now, we need to show that 2xx3=23\frac{2 - x}{x - 3} = \frac{2}{3}. Substituting x=125x = \frac{12}{5}, we get:
21251253=1012512155=2535=23=23\frac{2 - \frac{12}{5}}{\frac{12}{5} - 3} = \frac{\frac{10 - 12}{5}}{\frac{12 - 15}{5}} = \frac{\frac{-2}{5}}{\frac{-3}{5}} = \frac{-2}{-3} = \frac{2}{3}.
Therefore, 2xx3=23\frac{2-x}{x-3} = \frac{2}{3} is true when 12\frac{1}{2}, 1x\frac{1}{x} and 13\frac{1}{3} are in A.P.

3. Final Answer

(a) x4x3\frac{x - 4}{x - 3}
(b) Shown that 2xx3=23\frac{2-x}{x-3} = \frac{2}{3}.

Related problems in "Algebra"

The problem is to divide the polynomial $2x^4y^3 - \frac{1}{5}x^3y^2 + \frac{1}{4}x^2y$ by $-\frac{1...

Polynomial DivisionAlgebraic Manipulation
2025/4/21

Simplify the expression: $\frac{1}{3}a^2b - \frac{3}{5}ab^2 + \frac{3}{8}a^2b^2 - \frac{5}{3}ab$

PolynomialsSimplificationAlgebraic Expressions
2025/4/21

The problem is to simplify the expression $\frac{1}{3}a^2b - \frac{3}{5}ab^2 + \frac{3}{8}a^2b - \fr...

PolynomialsSimplificationAlgebraic ExpressionsCombining Like TermsFractions
2025/4/21

The problem is to simplify the following expression: $(3a^2b - 5ab^2 + 8a^2b^2) / (-ab) + (3x^4y^3 -...

PolynomialsSimplificationAlgebraic Expressions
2025/4/21

The problem 15 is to divide the polynomial $a^2b - ab^2 + \frac{3}{8}a^2b^2$ by $-\frac{5}{3}ab$. Th...

Polynomial DivisionAlgebraic Manipulation
2025/4/21

Simplify the expression: $\frac{2}{3}x^4y^3 - \frac{1}{5}x^3y^2 + \frac{1}{4}xy - \frac{1}{5}xy^2$

PolynomialsSimplificationAlgebraic Expressions
2025/4/21

The problem requires simplifying the expression: $\frac{1}{3}a^2b - \frac{3}{5}ab^2 + \frac{3}{8}a^2...

PolynomialsSimplificationAlgebraic Expressions
2025/4/21

The problem is to divide the polynomial $\frac{1}{3}y^5 - \frac{2}{3}y^3 + \frac{3}{8}a^2b^2$ by $\f...

Polynomial DivisionAlgebraic Manipulation
2025/4/21

Simplify the expression $\frac{(-2a^2b^4)^2}{12a^3b^2}$.

ExponentsSimplificationAlgebraic Expressions
2025/4/21

The problem is to simplify the expression: $(\frac{-2a^2b^{\frac{3}{4}}}{12a^3b^{\frac{1}{2}}})^2$

ExponentsSimplificationAlgebraic ExpressionsFractional Exponents
2025/4/21