First, we write the division:
−52x3y2−43xn−1yn+2+81xn+1−32xn+1ym Next, we divide each term of the polynomial by the monomial.
−52x3y2−43xn−1yn+2=−52−43⋅x3xn−1⋅y2yn+2=43⋅25⋅xn−1−3⋅yn+2−2=815xn−4yn −52x3y281xn+1=−5281⋅x3xn+1⋅y21=81⋅(−25)⋅xn+1−3⋅y−2=−165xn−2y−2 −52x3y2−32xn+1ym=−52−32⋅x3xn+1⋅y2ym=32⋅25⋅xn+1−3⋅ym−2=35xn−2ym−2 Therefore, the result of the division is:
815xn−4yn−165xn−2y−2+35xn−2ym−2