The problem is to divide the polynomial $ -\frac{3}{4}x^{n-1}y^{n+2} + \frac{1}{8}x^{n+1} - \frac{2}{3}x^{n+1}y^m $ by the monomial $ -\frac{2}{5}x^3y^2 $.

AlgebraPolynomial DivisionExponentsAlgebraic Manipulation
2025/4/21

1. Problem Description

The problem is to divide the polynomial 34xn1yn+2+18xn+123xn+1ym -\frac{3}{4}x^{n-1}y^{n+2} + \frac{1}{8}x^{n+1} - \frac{2}{3}x^{n+1}y^m by the monomial 25x3y2 -\frac{2}{5}x^3y^2 .

2. Solution Steps

First, we write the division:
34xn1yn+2+18xn+123xn+1ym25x3y2 \frac{-\frac{3}{4}x^{n-1}y^{n+2} + \frac{1}{8}x^{n+1} - \frac{2}{3}x^{n+1}y^m}{-\frac{2}{5}x^3y^2}
Next, we divide each term of the polynomial by the monomial.
34xn1yn+225x3y2=3425xn1x3yn+2y2=3452xn13yn+22=158xn4yn \frac{-\frac{3}{4}x^{n-1}y^{n+2}}{-\frac{2}{5}x^3y^2} = \frac{-\frac{3}{4}}{-\frac{2}{5}} \cdot \frac{x^{n-1}}{x^3} \cdot \frac{y^{n+2}}{y^2} = \frac{3}{4} \cdot \frac{5}{2} \cdot x^{n-1-3} \cdot y^{n+2-2} = \frac{15}{8}x^{n-4}y^n
18xn+125x3y2=1825xn+1x31y2=18(52)xn+13y2=516xn2y2 \frac{\frac{1}{8}x^{n+1}}{-\frac{2}{5}x^3y^2} = \frac{\frac{1}{8}}{-\frac{2}{5}} \cdot \frac{x^{n+1}}{x^3} \cdot \frac{1}{y^2} = \frac{1}{8} \cdot (-\frac{5}{2}) \cdot x^{n+1-3} \cdot y^{-2} = -\frac{5}{16}x^{n-2}y^{-2}
23xn+1ym25x3y2=2325xn+1x3ymy2=2352xn+13ym2=53xn2ym2 \frac{-\frac{2}{3}x^{n+1}y^m}{-\frac{2}{5}x^3y^2} = \frac{-\frac{2}{3}}{-\frac{2}{5}} \cdot \frac{x^{n+1}}{x^3} \cdot \frac{y^m}{y^2} = \frac{2}{3} \cdot \frac{5}{2} \cdot x^{n+1-3} \cdot y^{m-2} = \frac{5}{3}x^{n-2}y^{m-2}
Therefore, the result of the division is:
158xn4yn516xn2y2+53xn2ym2 \frac{15}{8}x^{n-4}y^n -\frac{5}{16}x^{n-2}y^{-2} + \frac{5}{3}x^{n-2}y^{m-2}

3. Final Answer

158xn4yn516xn2y2+53xn2ym2 \frac{15}{8}x^{n-4}y^n -\frac{5}{16}x^{n-2}y^{-2} + \frac{5}{3}x^{n-2}y^{m-2}

Related problems in "Algebra"

The problem involves complex numbers. Given $z_1 = 5 + 2i$, $z_2 = 7 + yi$, and $z_3 = x - 4i$, we n...

Complex NumbersComplex Number ArithmeticComplex ConjugateSquare Root of Complex Number
2025/6/27

The problem asks us to find the range of values for the constant $a$ such that the equation $4^x - a...

Quadratic EquationsInequalitiesExponentsRoots of EquationsDiscriminant
2025/6/27

Given $A = \{1, 2\}$ and $B = \mathbb{R}$, we need to sketch the graph of $R = A \times B$. We need ...

SetsRelationsFunctionsCartesian ProductGraphs
2025/6/27

Solve the equation $ \lceil x^2 - x \rceil = x + 3 $ for $x \in \mathbb{R}$, where $ \lceil x \rceil...

Ceiling FunctionQuadratic EquationsInteger Solutions
2025/6/27

A lemming runs from point A to a cliff at B at 4 m/s, jumps over the edge and falls to point C at an...

Word ProblemLinear EquationsDistance, Speed, and Time
2025/6/27

Given three matrices $X$, $Y$, and $Z$ as follows: $X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \en...

MatricesMatrix TransposeMatrix MultiplicationMatrix Addition
2025/6/27

We have two problems to solve. Problem 6: A man is 32 years older than his son. Ten years ago, the m...

Word ProblemsSystems of EquationsLinear EquationsRate ProblemsDistance, Rate, and Time
2025/6/26

We are given two systems of equations to solve. System 1: $3m - n = 5$ $2m + 5n = 7$ System 2: $5c -...

Systems of EquationsLinear EquationsSubstitution
2025/6/26

We are given 8 problems. Let's solve them one by one. Problem 1: A man receives a total of $17800$ o...

Linear EquationsWord ProblemsRatio and ProportionGeometryQuadratic EquationsDistance, Rate, and Time
2025/6/26

The length of a straight line ABC is 5 meters. The ratio of the length of AB to the length of BC is ...

Ratio and ProportionLinear EquationsWord Problem
2025/6/26