First, we write the expression for the division:
(31y5−32y3+83a2b2)÷(41y2) Next, we divide each term of the polynomial by 41y2. Term 1: 31y5÷41y2=31y5⋅14y−2=34y5−2=34y3 Term 2: −32y3÷41y2=−32y3⋅14y−2=−38y3−2=−38y Term 3: 83a2b2÷41y2=83a2b2⋅14y−2=812a2b2y−2=23a2b2y−2=2y23a2b2 Now, we add the results of the divisions of each term:
34y3−38y+2y23a2b2