First, calculate the value of 5 × 21 5 \times 21 5 × 21 . 5 × 21 = 105 5 \times 21 = 105 5 × 21 = 105 So the equation becomes S e m ( 105 ) = c o s ( 9 ∘ ) + t a n ( 5 x ) Sem(105) = cos(9^\circ) + tan(5x) S e m ( 105 ) = cos ( 9 ∘ ) + t an ( 5 x ) . Since S e m Sem S e m is the semiperimeter, it is not a function, and the semiperimeter of 105 is not uniquely defined. However, I assume that we are working in degrees.
I also assume that S e m ( x ) Sem(x) S e m ( x ) means sin ( x ) \sin(x) sin ( x ) . This is the only way the problem makes sense. Then the equation is sin ( 105 ∘ ) = cos ( 9 ∘ ) + tan ( 5 x ) \sin(105^\circ) = \cos(9^\circ) + \tan(5x) sin ( 10 5 ∘ ) = cos ( 9 ∘ ) + tan ( 5 x ) . We know that sin ( 105 ∘ ) = sin ( 180 ∘ − 105 ∘ ) = sin ( 75 ∘ ) \sin(105^\circ) = \sin(180^\circ - 105^\circ) = \sin(75^\circ) sin ( 10 5 ∘ ) = sin ( 18 0 ∘ − 10 5 ∘ ) = sin ( 7 5 ∘ ) And sin ( 75 ∘ ) = sin ( 45 ∘ + 30 ∘ ) = sin ( 45 ∘ ) cos ( 30 ∘ ) + cos ( 45 ∘ ) sin ( 30 ∘ ) \sin(75^\circ) = \sin(45^\circ + 30^\circ) = \sin(45^\circ)\cos(30^\circ) + \cos(45^\circ)\sin(30^\circ) sin ( 7 5 ∘ ) = sin ( 4 5 ∘ + 3 0 ∘ ) = sin ( 4 5 ∘ ) cos ( 3 0 ∘ ) + cos ( 4 5 ∘ ) sin ( 3 0 ∘ ) = 2 2 ⋅ 3 2 + 2 2 ⋅ 1 2 = 6 + 2 4 = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} = 2 2 ⋅ 2 3 + 2 2 ⋅ 2 1 = 4 6 + 2 We also have cos ( 9 ∘ ) \cos(9^\circ) cos ( 9 ∘ ) . Using a calculator, cos ( 9 ∘ ) ≈ 0.987688 \cos(9^\circ) \approx 0.987688 cos ( 9 ∘ ) ≈ 0.987688 . Also sin ( 105 ∘ ) ≈ 0.965926 \sin(105^\circ) \approx 0.965926 sin ( 10 5 ∘ ) ≈ 0.965926 .
Then the equation becomes 0.965926 ≈ 0.987688 + tan ( 5 x ) 0.965926 \approx 0.987688 + \tan(5x) 0.965926 ≈ 0.987688 + tan ( 5 x ) . So tan ( 5 x ) ≈ 0.965926 − 0.987688 = − 0.021762 \tan(5x) \approx 0.965926 - 0.987688 = -0.021762 tan ( 5 x ) ≈ 0.965926 − 0.987688 = − 0.021762 . So 5 x = arctan ( − 0.021762 ) 5x = \arctan(-0.021762) 5 x = arctan ( − 0.021762 ) . 5 x ≈ − 1.2469 ∘ 5x \approx -1.2469^\circ 5 x ≈ − 1.246 9 ∘ x ≈ − 0.24938 ∘ x \approx -0.24938^\circ x ≈ − 0.2493 8 ∘
If we assume that S e m ( x ) Sem(x) S e m ( x ) stands for simply x x x , then the equation is 105 = cos ( 9 ∘ ) + tan ( 5 x ) 105 = \cos(9^\circ) + \tan(5x) 105 = cos ( 9 ∘ ) + tan ( 5 x ) . 105 − cos ( 9 ∘ ) = tan ( 5 x ) 105 - \cos(9^\circ) = \tan(5x) 105 − cos ( 9 ∘ ) = tan ( 5 x ) 105 − 0.987688 = tan ( 5 x ) 105 - 0.987688 = \tan(5x) 105 − 0.987688 = tan ( 5 x ) 104.012312 = tan ( 5 x ) 104.012312 = \tan(5x) 104.012312 = tan ( 5 x ) 5 x = arctan ( 104.012312 ) 5x = \arctan(104.012312) 5 x = arctan ( 104.012312 ) 5 x = 89.45085 ∘ 5x = 89.45085^\circ 5 x = 89.4508 5 ∘ x = 17.89017 ∘ x = 17.89017^\circ x = 17.8901 7 ∘
If S e m ( x ) Sem(x) S e m ( x ) stands for sin ( x ) \sin(x) sin ( x ) , and all the angles are in radians, then sin ( 105 ) = cos ( 9 ) + tan ( 5 x ) \sin(105) = \cos(9) + \tan(5x) sin ( 105 ) = cos ( 9 ) + tan ( 5 x ) − 0.94023 ≈ 0.9912 + tan ( 5 x ) -0.94023 \approx 0.9912 + \tan(5x) − 0.94023 ≈ 0.9912 + tan ( 5 x ) tan ( 5 x ) ≈ − 1.93143 \tan(5x) \approx -1.93143 tan ( 5 x ) ≈ − 1.93143 5 x ≈ − 1.09452 5x \approx -1.09452 5 x ≈ − 1.09452 x ≈ − 0.2189 x \approx -0.2189 x ≈ − 0.2189 radians x ≈ − 12.545 x \approx -12.545 x ≈ − 12.545 degrees.