The problem asks us to evaluate four expressions: 1. $log_5 0.2$

AlgebraLogarithmsExponentsProperties of LogarithmsProperties of Exponents
2025/4/22

1. Problem Description

The problem asks us to evaluate four expressions:

1. $log_5 0.2$

2. $log_{10} 0.1$

3. $e^{ln \pi}$

4. $e^{ln \sqrt{5}}$

2. Solution Steps

1. $log_5 0.2$

Since 0.2=15=510.2 = \frac{1}{5} = 5^{-1}, we have
log50.2=log551=1log_5 0.2 = log_5 5^{-1} = -1

2. $log_{10} 0.1$

Since 0.1=110=1010.1 = \frac{1}{10} = 10^{-1}, we have
log100.1=log10101=1log_{10} 0.1 = log_{10} 10^{-1} = -1

3. $e^{ln \pi}$

Using the property that elnx=xe^{ln x} = x, we have
elnπ=πe^{ln \pi} = \pi

4. $e^{ln \sqrt{5}}$

Using the property that elnx=xe^{ln x} = x, we have
eln5=5e^{ln \sqrt{5}} = \sqrt{5}

3. Final Answer

1. $log_5 0.2 = -1$

2. $log_{10} 0.1 = -1$

3. $e^{ln \pi} = \pi$

4. $e^{ln \sqrt{5}} = \sqrt{5}$

Related problems in "Algebra"