The random variable $X$ is defined by its probability density function (PDF) $f(x)$ as follows: $f(x) = \begin{cases} 0, & x < -\frac{\pi}{2} \\ a \cdot \cos(x), & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ 0, & x \ge \frac{\pi}{2} \end{cases}$ The problem asks to find the value of the parameter $a$ and the cumulative distribution function (CDF) $F(x)$.
Probability and StatisticsProbability Density FunctionCumulative Distribution FunctionIntegrationTrigonometry
2025/4/22
1. Problem Description
The random variable is defined by its probability density function (PDF) as follows:
$f(x) = \begin{cases}
0, & x < -\frac{\pi}{2} \\
a \cdot \cos(x), & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\
0, & x \ge \frac{\pi}{2}
\end{cases}$
The problem asks to find the value of the parameter and the cumulative distribution function (CDF) .
2. Solution Steps
First, we need to find the value of . The integral of the probability density function over the entire real line must be equal to 1:
Since is non-zero only between and , we have:
Now, we need to find the CDF . The CDF is defined as:
We have three cases:
1. $x < -\frac{\pi}{2}$:
2. $-\frac{\pi}{2} \le x < \frac{\pi}{2}$:
3. $x \ge \frac{\pi}{2}$:
Therefore, the CDF is:
$F(x) = \begin{cases}
0, & x < -\frac{\pi}{2} \\
\frac{1}{2} (\sin(x) + 1), & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\
1, & x \ge \frac{\pi}{2}
\end{cases}$
3. Final Answer
$F(x) = \begin{cases}
0, & x < -\frac{\pi}{2} \\
\frac{1}{2} (\sin(x) + 1), & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\
1, & x \ge \frac{\pi}{2}
\end{cases}$