We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$ iii) $log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12$

AlgebraLogarithmsLogarithmic PropertiesSimplification
2025/4/22

1. Problem Description

We need to simplify three logarithmic expressions:
i) log105+2log104log_10 5 + 2 log_10 4
ii) 2log7log142 log 7 - log 14
iii) log536+2log5712log512log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12

2. Solution Steps

i) log105+2log104log_10 5 + 2 log_10 4
We use the power rule for logarithms: nlogax=loga(xn)n log_a x = log_a (x^n).
2log104=log10(42)=log10162 log_10 4 = log_10 (4^2) = log_10 16
So, log105+log1016log_10 5 + log_10 16
Now, we use the product rule for logarithms: logax+logay=loga(xy)log_a x + log_a y = log_a (xy).
log105+log1016=log10(516)=log1080log_10 5 + log_10 16 = log_10 (5 \cdot 16) = log_10 80
ii) 2log7log142 log 7 - log 14
Using the power rule for logarithms: 2log7=log(72)=log492 log 7 = log (7^2) = log 49.
So, log49log14log 49 - log 14.
Now, we use the quotient rule for logarithms: logaxlogay=loga(xy)log_a x - log_a y = log_a (\frac{x}{y}).
log49log14=log(4914)=log(72)log 49 - log 14 = log (\frac{49}{14}) = log (\frac{7}{2})
iii) log536+2log5712log512log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12
Using the power rule for logarithms: 2log57=log5(72)=log5492 log_5 7 = log_5 (7^2) = log_5 49 and 12log512=log5(1212)=log512=log5(23)\frac{1}{2} log_5 12 = log_5 (12^{\frac{1}{2}}) = log_5 \sqrt{12} = log_5 (2\sqrt{3}).
So, log536+log549log5(23)log_5 36 + log_5 49 - log_5 (2\sqrt{3}).
Using the product rule for logarithms: log536+log549=log5(3649)=log51764log_5 36 + log_5 49 = log_5 (36 \cdot 49) = log_5 1764.
Now, log51764log5(23)=log5(176423)=log5(8823)=log5(88233)=log5(2943)log_5 1764 - log_5 (2\sqrt{3}) = log_5 (\frac{1764}{2\sqrt{3}}) = log_5 (\frac{882}{\sqrt{3}}) = log_5 (\frac{882\sqrt{3}}{3}) = log_5 (294\sqrt{3}).

3. Final Answer

i) log1080log_{10} 80
ii) log(72)log(\frac{7}{2})
iii) log5(2943)log_5(294\sqrt{3})

Related problems in "Algebra"

The problem is to solve the logarithmic equation $\log_{3} x = 2$ for $x$.

LogarithmsExponential FormEquation Solving
2025/4/22

We need to solve the equation $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ for $x$....

Linear EquationsEquation SolvingAlgebraic Manipulation
2025/4/22

We are asked to solve the following equations: 4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$ 6. $0.3...

Linear EquationsSolving EquationsFractionsAlgebraic Manipulation
2025/4/22

The problem is to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Linear EquationsSolving EquationsFractions
2025/4/22

Solve the equation $\frac{3-5x}{7} - \frac{x}{4} = 2 + \frac{5-4x}{8}$ for $x$.

Linear EquationsEquation SolvingFractions
2025/4/22

Solve the following equations for $x$: Problem 7: $\frac{4}{3x} - \frac{3}{4x} = 7$ Problem 9: $\fra...

Linear EquationsSolving EquationsFractions
2025/4/22

The problem asks to find the value of the expression $((log_2 9)^2)^{\frac{1}{log_2(log_2 9)}} \time...

LogarithmsExponentiationAlgebraic Manipulation
2025/4/22

We are asked to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Algebraic EquationsSolving EquationsFractions
2025/4/22

The problem is to evaluate the expression $6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{...

LogarithmsQuadratic EquationsRadicalsAlgebraic Manipulation
2025/4/22

We are given a sequence $\{a_n\}$ defined recursively by $a_1 = 2$ and $a_{n+1} = 3a_n + 4$. The goa...

Sequences and SeriesRecurrence RelationsGeometric Sequences
2025/4/22