We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$ iii) $log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12$

AlgebraLogarithmsLogarithmic PropertiesSimplification
2025/4/22

1. Problem Description

We need to simplify three logarithmic expressions:
i) log105+2log104log_10 5 + 2 log_10 4
ii) 2log7log142 log 7 - log 14
iii) log536+2log5712log512log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12

2. Solution Steps

i) log105+2log104log_10 5 + 2 log_10 4
We use the power rule for logarithms: nlogax=loga(xn)n log_a x = log_a (x^n).
2log104=log10(42)=log10162 log_10 4 = log_10 (4^2) = log_10 16
So, log105+log1016log_10 5 + log_10 16
Now, we use the product rule for logarithms: logax+logay=loga(xy)log_a x + log_a y = log_a (xy).
log105+log1016=log10(516)=log1080log_10 5 + log_10 16 = log_10 (5 \cdot 16) = log_10 80
ii) 2log7log142 log 7 - log 14
Using the power rule for logarithms: 2log7=log(72)=log492 log 7 = log (7^2) = log 49.
So, log49log14log 49 - log 14.
Now, we use the quotient rule for logarithms: logaxlogay=loga(xy)log_a x - log_a y = log_a (\frac{x}{y}).
log49log14=log(4914)=log(72)log 49 - log 14 = log (\frac{49}{14}) = log (\frac{7}{2})
iii) log536+2log5712log512log_5 36 + 2 log_5 7 - \frac{1}{2} log_5 12
Using the power rule for logarithms: 2log57=log5(72)=log5492 log_5 7 = log_5 (7^2) = log_5 49 and 12log512=log5(1212)=log512=log5(23)\frac{1}{2} log_5 12 = log_5 (12^{\frac{1}{2}}) = log_5 \sqrt{12} = log_5 (2\sqrt{3}).
So, log536+log549log5(23)log_5 36 + log_5 49 - log_5 (2\sqrt{3}).
Using the product rule for logarithms: log536+log549=log5(3649)=log51764log_5 36 + log_5 49 = log_5 (36 \cdot 49) = log_5 1764.
Now, log51764log5(23)=log5(176423)=log5(8823)=log5(88233)=log5(2943)log_5 1764 - log_5 (2\sqrt{3}) = log_5 (\frac{1764}{2\sqrt{3}}) = log_5 (\frac{882}{\sqrt{3}}) = log_5 (\frac{882\sqrt{3}}{3}) = log_5 (294\sqrt{3}).

3. Final Answer

i) log1080log_{10} 80
ii) log(72)log(\frac{7}{2})
iii) log5(2943)log_5(294\sqrt{3})

Related problems in "Algebra"

The problem is to find the roots of the quadratic equation $x^2 + 9x + 14 = 0$.

Quadratic EquationsFactoringRoots
2025/6/23

The problem asks to find the solution set for the given quadratic equations by factorization. a) $x^...

Quadratic EquationsFactorizationSolution Sets
2025/6/23

We need to solve four inequalities for $x$. a) $3(2x - 1) < 2x + 5$ b) $-2(-2x + 4) \le x + 7$ c) $-...

InequalitiesLinear InequalitiesSolving Inequalities
2025/6/23

The problem is to solve the following inequalities: a) $4x + 8 \le 2x - 12$ b) $3x - 2 \ge x - 14$ c...

InequalitiesLinear InequalitiesSolving Inequalities
2025/6/23

We are asked to solve two inequalities for $x$. a) $x + 4 < 6$ b) $x - 2 \le -5$

InequalitiesLinear InequalitiesSolving Inequalities
2025/6/23

The problem requires solving two inequalities: a) $3(2x-1) < 2x + 5$ c) $-4(x-3) > -3(x-5)$

InequalitiesLinear InequalitiesAlgebraic Manipulation
2025/6/23

The problem asks to find the solution set for the given quadratic equations by factorization. a) $x^...

Quadratic EquationsFactorizationSolution Sets
2025/6/23

We have two equations to solve for $x$: g) $\frac{1}{3}x - 9 = \frac{1}{5}x - 7$ h) $\frac{3}{4}x - ...

Linear EquationsSolving EquationsAlgebraic Manipulation
2025/6/23

We have two linear equations to solve for $x$. The first equation is $-0.4x - 3 = -0.2 + 8x$. The se...

Linear EquationsSolving Equations
2025/6/23

We are given two linear equations to solve for $x$. The equations are: c) $2(3x-4) = -5(2x-7)$ d) $-...

Linear EquationsSolving EquationsAlgebraic Manipulation
2025/6/23