The problem is to evaluate the expression $6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \cdots }}} \right\}$.

AlgebraLogarithmsQuadratic EquationsRadicalsAlgebraic Manipulation
2025/4/22

1. Problem Description

The problem is to evaluate the expression 6+log32{132413241324132}6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \cdots }}} \right\}.

2. Solution Steps

Let x=413241324132x = \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \cdots }}}
Then x=4132xx = \sqrt{4 - \frac{1}{3\sqrt{2}} x}.
Squaring both sides, we get x2=4132xx^2 = 4 - \frac{1}{3\sqrt{2}} x.
Rearranging the terms, we have x2+132x4=0x^2 + \frac{1}{3\sqrt{2}} x - 4 = 0.
Multiplying by 323\sqrt{2}, we get 32x2+x122=03\sqrt{2} x^2 + x - 12\sqrt{2} = 0.
Using the quadratic formula, we have
x=1±124(32)(122)2(32)=1±1+4(3)(12)(2)62=1±1+28862=1±28962=1±1762x = \frac{-1 \pm \sqrt{1^2 - 4(3\sqrt{2})(-12\sqrt{2})}}{2(3\sqrt{2})} = \frac{-1 \pm \sqrt{1 + 4(3)(12)(2)}}{6\sqrt{2}} = \frac{-1 \pm \sqrt{1 + 288}}{6\sqrt{2}} = \frac{-1 \pm \sqrt{289}}{6\sqrt{2}} = \frac{-1 \pm 17}{6\sqrt{2}}.
Since xx must be positive, we take the positive root, so x=1+1762=1662=832x = \frac{-1 + 17}{6\sqrt{2}} = \frac{16}{6\sqrt{2}} = \frac{8}{3\sqrt{2}}.
Then the expression inside the logarithm is 132832=89(2)=818=49\frac{1}{3\sqrt{2}} \cdot \frac{8}{3\sqrt{2}} = \frac{8}{9(2)} = \frac{8}{18} = \frac{4}{9}.
Now we have 6+log32(49)=6+log32((23)2)=6+2log32(23)=6+2log32((32)1)=6+2(1)log32(32)=62(1)=62=46 + \log_{\frac{3}{2}} \left( \frac{4}{9} \right) = 6 + \log_{\frac{3}{2}} \left( \left( \frac{2}{3} \right)^2 \right) = 6 + 2 \log_{\frac{3}{2}} \left( \frac{2}{3} \right) = 6 + 2 \log_{\frac{3}{2}} \left( \left( \frac{3}{2} \right)^{-1} \right) = 6 + 2(-1) \log_{\frac{3}{2}} \left( \frac{3}{2} \right) = 6 - 2(1) = 6 - 2 = 4.

3. Final Answer

4

Related problems in "Algebra"

The problem is to solve the logarithmic equation $\log_{3} x = 2$ for $x$.

LogarithmsExponential FormEquation Solving
2025/4/22

We need to solve the equation $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ for $x$....

Linear EquationsEquation SolvingAlgebraic Manipulation
2025/4/22

We are asked to solve the following equations: 4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$ 6. $0.3...

Linear EquationsSolving EquationsFractionsAlgebraic Manipulation
2025/4/22

The problem is to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Linear EquationsSolving EquationsFractions
2025/4/22

Solve the equation $\frac{3-5x}{7} - \frac{x}{4} = 2 + \frac{5-4x}{8}$ for $x$.

Linear EquationsEquation SolvingFractions
2025/4/22

Solve the following equations for $x$: Problem 7: $\frac{4}{3x} - \frac{3}{4x} = 7$ Problem 9: $\fra...

Linear EquationsSolving EquationsFractions
2025/4/22

The problem asks to find the value of the expression $((log_2 9)^2)^{\frac{1}{log_2(log_2 9)}} \time...

LogarithmsExponentiationAlgebraic Manipulation
2025/4/22

We are asked to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Algebraic EquationsSolving EquationsFractions
2025/4/22

We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$...

LogarithmsLogarithmic PropertiesSimplification
2025/4/22

We are given a sequence $\{a_n\}$ defined recursively by $a_1 = 2$ and $a_{n+1} = 3a_n + 4$. The goa...

Sequences and SeriesRecurrence RelationsGeometric Sequences
2025/4/22