We are asked to solve the following equations: 4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$ 6. $0.3(6+x) = 0.4(8-x)$ 8. $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ 10. $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ 11. $\frac{3(x-1)}{4} - 2 = 5x - \frac{x-2}{2}$ Let's solve each equation.

AlgebraLinear EquationsSolving EquationsFractionsAlgebraic Manipulation
2025/4/22

1. Problem Description

We are asked to solve the following equations:

4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$

6. $0.3(6+x) = 0.4(8-x)$

8. $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$

1

0. $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$

1

1. $\frac{3(x-1)}{4} - 2 = 5x - \frac{x-2}{2}$

Let's solve each equation.

2. Solution Steps

4. $\frac{3}{4}y + 2y = \frac{1}{2} + 4y - 3$

34y+84y=4y52\frac{3}{4}y + \frac{8}{4}y = 4y - \frac{5}{2}
114y=4y52\frac{11}{4}y = 4y - \frac{5}{2}
114y164y=52\frac{11}{4}y - \frac{16}{4}y = -\frac{5}{2}
54y=52-\frac{5}{4}y = -\frac{5}{2}
y=52(45)y = -\frac{5}{2} \cdot (-\frac{4}{5})
y=2y = 2

6. $0.3(6+x) = 0.4(8-x)$

1.8+0.3x=3.20.4x1.8 + 0.3x = 3.2 - 0.4x
0.3x+0.4x=3.21.80.3x + 0.4x = 3.2 - 1.8
0.7x=1.40.7x = 1.4
x=1.40.7x = \frac{1.4}{0.7}
x=2x = 2

8. $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$

410x2510x=110\frac{4}{10x} - \frac{25}{10x} = \frac{1}{10}
42510x=110\frac{4-25}{10x} = \frac{1}{10}
2110x=110\frac{-21}{10x} = \frac{1}{10}
210=10x-210 = 10x
x=21x = -21

9. $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$

Multiply by 56:
8(35x)14x=28+7(54x)8(3-5x) - 14x = 28 + 7(5-4x)
2440x14x=28+3528x24 - 40x - 14x = 28 + 35 - 28x
2454x=6328x24 - 54x = 63 - 28x
54x+28x=6324-54x + 28x = 63 - 24
26x=39-26x = 39
x=3926x = \frac{39}{-26}
x=32x = -\frac{3}{2}
1

0. $\frac{3(x-1)}{4} - 2 = 5x - \frac{x-2}{2}$

Multiply by 4:
3(x1)8=20x2(x2)3(x-1) - 8 = 20x - 2(x-2)
3x38=20x2x+43x - 3 - 8 = 20x - 2x + 4
3x11=18x+43x - 11 = 18x + 4
3x18x=4+113x - 18x = 4 + 11
15x=15-15x = 15
x=1x = -1

3. Final Answer

4. $y = 2$

5. $x = 2$

6. $x = -21$

7. $x = -\frac{3}{2}$

8. $x = -1$

Related problems in "Algebra"

The problem is to solve the logarithmic equation $\log_{3} x = 2$ for $x$.

LogarithmsExponential FormEquation Solving
2025/4/22

We need to solve the equation $\frac{3-5x}{7} - \frac{x}{4} = \frac{1}{2} + \frac{5-4x}{8}$ for $x$....

Linear EquationsEquation SolvingAlgebraic Manipulation
2025/4/22

The problem is to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Linear EquationsSolving EquationsFractions
2025/4/22

Solve the equation $\frac{3-5x}{7} - \frac{x}{4} = 2 + \frac{5-4x}{8}$ for $x$.

Linear EquationsEquation SolvingFractions
2025/4/22

Solve the following equations for $x$: Problem 7: $\frac{4}{3x} - \frac{3}{4x} = 7$ Problem 9: $\fra...

Linear EquationsSolving EquationsFractions
2025/4/22

The problem asks to find the value of the expression $((log_2 9)^2)^{\frac{1}{log_2(log_2 9)}} \time...

LogarithmsExponentiationAlgebraic Manipulation
2025/4/22

We are asked to solve the equation $\frac{2}{5x} - \frac{5}{2x} = \frac{1}{10}$ for $x$.

Algebraic EquationsSolving EquationsFractions
2025/4/22

The problem is to evaluate the expression $6 + \log_{\frac{3}{2}} \left\{ \frac{1}{3\sqrt{2}} \sqrt{...

LogarithmsQuadratic EquationsRadicalsAlgebraic Manipulation
2025/4/22

We need to simplify three logarithmic expressions: i) $log_10 5 + 2 log_10 4$ ii) $2 log 7 - log 14$...

LogarithmsLogarithmic PropertiesSimplification
2025/4/22

We are given a sequence $\{a_n\}$ defined recursively by $a_1 = 2$ and $a_{n+1} = 3a_n + 4$. The goa...

Sequences and SeriesRecurrence RelationsGeometric Sequences
2025/4/22