First, simplify the numerator:
x4⋅(x−2y3)−3=x4⋅(x−2)−3⋅(y3)−3=x4⋅x(−2)(−3)⋅y3(−3)=x4⋅x6⋅y−9=x4+6⋅y−9=x10y−9. Next, simplify the denominator:
2y⋅2xy3=2⋅2⋅x⋅y⋅y3=4xy1+3=4xy4. Now, we can rewrite the entire expression as:
4xy4x10y−9. Using the quotient rule for exponents: xbxa=xa−b and ybya=ya−b, we have: xx10⋅y4y−9⋅41=1x10−1⋅1y−9−4⋅41=1x9⋅1y−13⋅41=4x9y−13. To eliminate the negative exponent, we write:
4y13x9.