We simplify the given expression using the properties of exponents.
a0=1 for a=0 b0=1 for b=0 (xm)n=xmn xmxn=xm+n xnxm=xm−n First, simplify the numerator:
(a0b−2)2=(1⋅b−2)2=(b−2)2=b−4 Next, simplify the denominator:
b⋅a⋅b0=b⋅a⋅1=a⋅b Now, the expression becomes:
abb−4=a1b1b−4=a1⋅b1b−4=a1⋅b−4−1=a1⋅b−5=a1⋅b51=ab51