The problem provides the equation $x^2 = 5 + 2\sqrt{6}$ and asks to find the value of $x$. Also, it states that $a+b+c=m$, $a^2+b^2+c^2=n$ and $a^3+b^3 = p^3$. We need to show that $\frac{x^8+1}{x^4} = 98$, and if $c=0$, we need to show that $m^3 + 2p^3 = 3mn$.

AlgebraEquationsExponentsAlgebraic ManipulationSimplificationPerfect SquaresInequalities
2025/4/22

1. Problem Description

The problem provides the equation x2=5+26x^2 = 5 + 2\sqrt{6} and asks to find the value of xx. Also, it states that a+b+c=ma+b+c=m, a2+b2+c2=na^2+b^2+c^2=n and a3+b3=p3a^3+b^3 = p^3. We need to show that x8+1x4=98\frac{x^8+1}{x^4} = 98, and if c=0c=0, we need to show that m3+2p3=3mnm^3 + 2p^3 = 3mn.

2. Solution Steps

Part (a): Find the value of xx.
We are given x2=5+26x^2 = 5 + 2\sqrt{6}. We can rewrite the right side as a perfect square:
x2=5+26=2+3+223=(2)2+(3)2+223=(2+3)2x^2 = 5 + 2\sqrt{6} = 2 + 3 + 2\sqrt{2}\sqrt{3} = (\sqrt{2})^2 + (\sqrt{3})^2 + 2\sqrt{2}\sqrt{3} = (\sqrt{2} + \sqrt{3})^2
Taking the square root of both sides, we get
x=±(2+3)x = \pm(\sqrt{2} + \sqrt{3})
Since the question asks for "the value of x", we'll take the positive root.
x=2+3x = \sqrt{2} + \sqrt{3}
Part (b): Show that x8+1x4=98\frac{x^8+1}{x^4} = 98.
Since x=2+3x = \sqrt{2} + \sqrt{3}, we have x2=5+26x^2 = 5 + 2\sqrt{6}.
We want to find x4x^4.
x4=(x2)2=(5+26)2=52+2(5)(26)+(26)2=25+206+4(6)=25+206+24=49+206x^4 = (x^2)^2 = (5 + 2\sqrt{6})^2 = 5^2 + 2(5)(2\sqrt{6}) + (2\sqrt{6})^2 = 25 + 20\sqrt{6} + 4(6) = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}.
Now we want to find x8x^8.
x8=(x4)2=(49+206)2=492+2(49)(206)+(206)2=2401+19606+400(6)=2401+19606+2400=4801+19606x^8 = (x^4)^2 = (49 + 20\sqrt{6})^2 = 49^2 + 2(49)(20\sqrt{6}) + (20\sqrt{6})^2 = 2401 + 1960\sqrt{6} + 400(6) = 2401 + 1960\sqrt{6} + 2400 = 4801 + 1960\sqrt{6}.
Now we consider x8+1x4=4801+19606+149+206=4802+1960649+206\frac{x^8+1}{x^4} = \frac{4801 + 1960\sqrt{6} + 1}{49 + 20\sqrt{6}} = \frac{4802 + 1960\sqrt{6}}{49 + 20\sqrt{6}}.
We can factor out 98 from the numerator:
4802=98×494802 = 98 \times 49 and 1960=98×201960 = 98 \times 20.
So, x8+1x4=98(49+206)49+206=98\frac{x^8+1}{x^4} = \frac{98(49 + 20\sqrt{6})}{49 + 20\sqrt{6}} = 98.
Part (c): If c=0c=0, show that m3+2p3=3mnm^3 + 2p^3 = 3mn.
We are given a+b+c=ma+b+c=m, a2+b2+c2=na^2+b^2+c^2=n, and a3+b3=p3a^3+b^3=p^3. If c=0c=0, then m=a+bm = a+b and n=a2+b2n = a^2+b^2. We want to show that m3+2p3=3mnm^3 + 2p^3 = 3mn.
m3=(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)=p3+3abmm^3 = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b) = p^3 + 3abm
m3+2p3=p3+3abm+2p3=3p3+3abm=3(a3+b3)+3ab(a+b)m^3 + 2p^3 = p^3 + 3abm + 2p^3 = 3p^3 + 3abm = 3(a^3+b^3) + 3ab(a+b)
Also, 3mn=3(a+b)(a2+b2)=3(a3+ab2+a2b+b3)=3(a3+b3+ab(a+b))3mn = 3(a+b)(a^2+b^2) = 3(a^3 + ab^2 + a^2b + b^3) = 3(a^3+b^3 + ab(a+b)).
Therefore, 3mn=3(a3+b3)+3ab(a+b)=3p3+3abm3mn = 3(a^3+b^3) + 3ab(a+b) = 3p^3 + 3abm.
So, m3+2p3=3p3+3abm=3mnm^3 + 2p^3 = 3p^3 + 3abm = 3mn.
Hence, m3+2p3=3mnm^3 + 2p^3 = 3mn when c=0c=0.

3. Final Answer

(a) x=2+3x = \sqrt{2} + \sqrt{3}
(b) x8+1x4=98\frac{x^8+1}{x^4} = 98
(c) m3+2p3=3mnm^3 + 2p^3 = 3mn

Related problems in "Algebra"

Solve the equation $\frac{a+1}{a(x+3)} - \frac{3ax}{a(x^2+2x-3)} = \frac{4}{x-1}$.

Algebraic EquationsSolving EquationsRational ExpressionsSimplification
2025/4/23

The problem presents the equation $y = \sqrt{4x + 1}$. We need to analyze this equation and provide ...

FunctionsDomainRangeSquare Root
2025/4/23

The image presents a chemical equation or a transformation involving symbols K, 15, 2 and an arrow. ...

EquationsVariablesSolving EquationsLinear Equations
2025/4/23

The problem is to solve the exponential equation $5 \times 2^{x-1} = 2 \times 5^{2x}$ for $x$.

Exponential EquationsLogarithmsEquation SolvingAlgebraic Manipulation
2025/4/23

The problem asks to solve the logarithmic equation $\log_a(2x+7) = \log_a x + 2\log_a 3$.

LogarithmsLogarithmic EquationsEquation Solving
2025/4/23

We need to solve the exponential equation $6^{1-T} = 5^{3T+1}$ for the variable $T$.

Exponential EquationsLogarithmsEquation SolvingLogarithm Properties
2025/4/23

The problem asks us to solve the exponential equation $4 \times 2^{2x+1} = 80$ for $x$.

Exponential EquationsLogarithmsEquation Solving
2025/4/23

Simplify the expression $4\log_3 2 - \log_3 4 - 2\log_3 \sqrt{3} - \log_3 12$ and write the final an...

LogarithmsLogarithmic PropertiesSimplification
2025/4/23

The problem asks to simplify the logarithmic expression $\log 8 + \log 5 - \log 0.5$ into a single l...

LogarithmsLogarithmic PropertiesSimplification
2025/4/23

We are asked to simplify the expression $3\log 8 - 3\log 6$ and express the result as a single logar...

LogarithmsLogarithm PropertiesSimplification
2025/4/23