Simplify the expression $\sqrt[3]{192x^3y^5z^{10}}$.

AlgebraSimplificationRadicalsExponentsAlgebraic Expressions
2025/4/23

1. Problem Description

Simplify the expression 192x3y5z103\sqrt[3]{192x^3y^5z^{10}}.

2. Solution Steps

First, we find the prime factorization of
1
9

2. $192 = 2^6 \cdot 3$.

Then we rewrite the given expression:
192x3y5z103=263x3y5z103\sqrt[3]{192x^3y^5z^{10}} = \sqrt[3]{2^6 \cdot 3 \cdot x^3 \cdot y^5 \cdot z^{10}}.
We can rewrite y5y^5 as y3y2y^3 \cdot y^2 and z10z^{10} as z9zz^9 \cdot z.
263x3y3y2z9z3=(22)33x3y3y2(z3)3z3\sqrt[3]{2^6 \cdot 3 \cdot x^3 \cdot y^3 \cdot y^2 \cdot z^9 \cdot z} = \sqrt[3]{(2^2)^3 \cdot 3 \cdot x^3 \cdot y^3 \cdot y^2 \cdot (z^3)^3 \cdot z}
Now we take out the perfect cubes from the cube root:
(22)3x3y3(z3)33y2z3=22xyz33y2z3=4xyz33y2z3\sqrt[3]{(2^2)^3 \cdot x^3 \cdot y^3 \cdot (z^3)^3 \cdot 3y^2z} = 2^2xyz^3\sqrt[3]{3y^2z} = 4xyz^3\sqrt[3]{3y^2z}.

3. Final Answer

The simplified expression is 4xyz33y2z34xyz^3\sqrt[3]{3y^2z}.

Related problems in "Algebra"