First, expand the squared terms:
(2x+1)2=(2x)2+2(2x)(1)+12=4x2+4x+1 (x−3)2=x2−2(x)(3)+32=x2−6x+9 Substitute these expressions back into the original equation:
(4x2+4x+1)−4(x2−6x+9)=5x+10 4x2+4x+1−4x2+24x−36=5x+10 Simplify the equation:
(4x2−4x2)+(4x+24x)+(1−36)=5x+10 28x−35=5x+10 Subtract 5x from both sides: 28x−5x−35=5x−5x+10 23x−35=10 Add 35 to both sides:
23x−35+35=10+35 Divide both sides by 23:
x=2345