We are given the expression 21[4logx−logx5]+log3x2. First, we simplify the terms inside the brackets: x5=x25 and 3x2=x32 So, logx5=logx25=25logx and log3x2=logx32=32logx. Now substitute these values back into the expression:
21[4logx−25logx]+32logx 21[28logx−25logx]+32logx 21[23logx]+32logx 43logx+32logx Now, find a common denominator for the fractions:
(43+32)logx (129+128)logx 1217logx