We are given a diagram with several angles labeled. Specifically, $\angle STQ = m$, $\angle TUQ = 80^\circ$, $\angle UPQ = r$, $\angle PQU = n$, and $\angle RQT = 88^\circ$. We need to find the value of $m+n$.

GeometryAnglesTrianglesStraight AnglesAngle Sum Property
2025/4/24

1. Problem Description

We are given a diagram with several angles labeled. Specifically, STQ=m\angle STQ = m, TUQ=80\angle TUQ = 80^\circ, UPQ=r\angle UPQ = r, PQU=n\angle PQU = n, and RQT=88\angle RQT = 88^\circ. We need to find the value of m+nm+n.

2. Solution Steps

Since RQT=88\angle RQT = 88^\circ and PQR\angle PQR is a straight angle, we have:
PQT+RQT=180 \angle PQT + \angle RQT = 180^\circ
PQT=180RQT=18088=92 \angle PQT = 180^\circ - \angle RQT = 180^\circ - 88^\circ = 92^\circ
We are given that PQU=n\angle PQU = n, so n=PQT=92n = \angle PQT = 92^\circ.
In triangle UQTUQT, we know TUQ=80\angle TUQ = 80^\circ and UQT=92\angle UQT = 92^\circ.
Since the sum of angles in a triangle is 180180^\circ, we have:
TUQ+UQT+UTQ=180 \angle TUQ + \angle UQT + \angle UTQ = 180^\circ
80+92+UTQ=180 80^\circ + 92^\circ + \angle UTQ = 180^\circ
UTQ=1808092=8 \angle UTQ = 180^\circ - 80^\circ - 92^\circ = 8^\circ
UTQ\angle UTQ and STQ=m\angle STQ = m form a straight angle.
UTQ+STQ=180 \angle UTQ + \angle STQ = 180^\circ
8+m=180 8^\circ + m = 180^\circ
m=1808=172 m = 180^\circ - 8^\circ = 172^\circ
We need to find the value of m+nm+n. We have m=172m = 172^\circ and n=92n = 92^\circ.
m+n=172+92=264 m + n = 172^\circ + 92^\circ = 264^\circ

3. Final Answer

The value of (m+n)(m+n) is 264264.

Related problems in "Geometry"

Point P moves on the circle $(x-6)^2 + y^2 = 9$. Find the locus of point Q which divides the line se...

LocusCirclesCoordinate Geometry
2025/6/12

We are given three points $A(5, 2)$, $B(-1, 0)$, and $C(3, -2)$. (1) We need to find the equation of...

CircleCircumcircleEquation of a CircleCoordinate GeometryCircumcenterRadius
2025/6/12

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9