We are given the values of $\log a$, $\log b$, and $\log c$, and we are asked to evaluate four logarithmic expressions involving $a$, $b$, and $c$. Specifically, $\log a = 2$, $\log b = -1$, and $\log c = 1\frac{1}{2} = \frac{3}{2}$. We need to evaluate the following: (a) $\log(a^2bc)$ (b) $\log(\frac{a^2}{bc^3})$ (c) $\log(a \sqrt{\frac{b}{c^3}})$ (d) $\log(\frac{\sqrt{10ac^3}}{b^2})$

AlgebraLogarithmsLogarithm PropertiesExponents
2025/3/17

1. Problem Description

We are given the values of loga\log a, logb\log b, and logc\log c, and we are asked to evaluate four logarithmic expressions involving aa, bb, and cc.
Specifically, loga=2\log a = 2, logb=1\log b = -1, and logc=112=32\log c = 1\frac{1}{2} = \frac{3}{2}. We need to evaluate the following:
(a) log(a2bc)\log(a^2bc)
(b) log(a2bc3)\log(\frac{a^2}{bc^3})
(c) log(abc3)\log(a \sqrt{\frac{b}{c^3}})
(d) log(10ac3b2)\log(\frac{\sqrt{10ac^3}}{b^2})

2. Solution Steps

(a) log(a2bc)\log(a^2bc)
Using the logarithm product rule: log(xy)=logx+logy\log(xy) = \log x + \log y
log(a2bc)=log(a2)+log(b)+log(c)\log(a^2bc) = \log(a^2) + \log(b) + \log(c)
Using the power rule: log(xn)=nlogx\log(x^n) = n\log x
log(a2)=2loga\log(a^2) = 2\log a
So, log(a2bc)=2loga+logb+logc\log(a^2bc) = 2\log a + \log b + \log c
Substituting the given values:
log(a2bc)=2(2)+(1)+32=41+32=3+32=62+32=92=4.5\log(a^2bc) = 2(2) + (-1) + \frac{3}{2} = 4 - 1 + \frac{3}{2} = 3 + \frac{3}{2} = \frac{6}{2} + \frac{3}{2} = \frac{9}{2} = 4.5
(b) log(a2bc3)\log(\frac{a^2}{bc^3})
Using the logarithm quotient rule: log(xy)=logxlogy\log(\frac{x}{y}) = \log x - \log y
log(a2bc3)=log(a2)log(bc3)\log(\frac{a^2}{bc^3}) = \log(a^2) - \log(bc^3)
Using the logarithm product rule: log(bc3)=logb+log(c3)\log(bc^3) = \log b + \log(c^3)
Using the power rule: log(c3)=3logc\log(c^3) = 3\log c
log(a2bc3)=log(a2)(logb+3logc)\log(\frac{a^2}{bc^3}) = \log(a^2) - (\log b + 3\log c)
Using the power rule: log(a2)=2loga\log(a^2) = 2\log a
log(a2bc3)=2logalogb3logc\log(\frac{a^2}{bc^3}) = 2\log a - \log b - 3\log c
Substituting the given values:
log(a2bc3)=2(2)(1)3(32)=4+192=592=10292=12=0.5\log(\frac{a^2}{bc^3}) = 2(2) - (-1) - 3(\frac{3}{2}) = 4 + 1 - \frac{9}{2} = 5 - \frac{9}{2} = \frac{10}{2} - \frac{9}{2} = \frac{1}{2} = 0.5
(c) log(abc3)\log(a \sqrt{\frac{b}{c^3}})
log(abc3)=loga+log(bc3)\log(a \sqrt{\frac{b}{c^3}}) = \log a + \log(\sqrt{\frac{b}{c^3}})
Using the power rule: log(bc3)=log((bc3)12)=12log(bc3)\log(\sqrt{\frac{b}{c^3}}) = \log((\frac{b}{c^3})^{\frac{1}{2}}) = \frac{1}{2} \log(\frac{b}{c^3})
Using the logarithm quotient rule: log(bc3)=logblog(c3)\log(\frac{b}{c^3}) = \log b - \log(c^3)
Using the power rule: log(c3)=3logc\log(c^3) = 3\log c
log(abc3)=loga+12(logb3logc)\log(a \sqrt{\frac{b}{c^3}}) = \log a + \frac{1}{2}(\log b - 3\log c)
Substituting the given values:
log(abc3)=2+12(13(32))=2+12(192)=2+12(2292)=2+12(112)=2114=84114=34=0.75\log(a \sqrt{\frac{b}{c^3}}) = 2 + \frac{1}{2}(-1 - 3(\frac{3}{2})) = 2 + \frac{1}{2}(-1 - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{2}{2} - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{11}{2}) = 2 - \frac{11}{4} = \frac{8}{4} - \frac{11}{4} = -\frac{3}{4} = -0.75
(d) log(10ac3b2)\log(\frac{\sqrt{10ac^3}}{b^2})
log(10ac3b2)=log(10ac3)log(b2)\log(\frac{\sqrt{10ac^3}}{b^2}) = \log(\sqrt{10ac^3}) - \log(b^2)
log(10ac3)=log((10ac3)12)=12log(10ac3)\log(\sqrt{10ac^3}) = \log((10ac^3)^{\frac{1}{2}}) = \frac{1}{2} \log(10ac^3)
log(10ac3)=log10+loga+log(c3)\log(10ac^3) = \log 10 + \log a + \log(c^3)
Assuming base 10 logarithm, log10=1\log 10 = 1
log(c3)=3logc\log(c^3) = 3\log c
log(10ac3b2)=12(1+loga+3logc)2logb\log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + \log a + 3\log c) - 2\log b
Substituting the given values:
log(10ac3b2)=12(1+2+3(32))2(1)=12(3+92)+2=12(62+92)+2=12(152)+2=154+2=154+84=234=5.75\log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + 2 + 3(\frac{3}{2})) - 2(-1) = \frac{1}{2}(3 + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{6}{2} + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{15}{2}) + 2 = \frac{15}{4} + 2 = \frac{15}{4} + \frac{8}{4} = \frac{23}{4} = 5.75

3. Final Answer

(a) log(a2bc)=4.5\log(a^2bc) = 4.5
(b) log(a2bc3)=0.5\log(\frac{a^2}{bc^3}) = 0.5
(c) log(abc3)=0.75\log(a \sqrt{\frac{b}{c^3}}) = -0.75
(d) log(10ac3b2)=5.75\log(\frac{\sqrt{10ac^3}}{b^2}) = 5.75

Related problems in "Algebra"

The problem asks to write the equation of the given line in slope-intercept form, which is $y = mx +...

Linear EquationsSlope-intercept formSlopeY-interceptCoordinate Geometry
2025/4/6

The problem asks us to provide a two-column proof to show that if $25 = -7(y - 3) + 5y$, then $-2 = ...

Linear EquationsEquation SolvingProofProperties of Equality
2025/4/6

The problem asks to prove that if $25 = -7(y - 3) + 5y$, then $y = -2$.

Linear EquationsEquation SolvingSimplification
2025/4/6

The problem states that if $x = 5$ and $b = 5$, then we need to determine if $x = b$.

VariablesEqualitySubstitution
2025/4/6

The problem states that if $2x = 5$, then we need to find the value of $x$.

Linear EquationsSolving Equations
2025/4/6

Solve for $x$ in the equation $(\frac{1}{3})^{\frac{x^2 - 2x}{16 - 2x^2}} = \sqrt[4x]{9}$.

Exponents and RadicalsEquationsSolving EquationsCubic Equations
2025/4/6

We are given that $a$ and $b$ are whole numbers such that $a^b = 121$. We need to evaluate $(a-1)^{b...

ExponentsEquationsInteger Solutions
2025/4/6

The problem is to solve the equation $(x+1)^{\log(x+1)} = 100(x+1)$. It is assumed the base of the ...

LogarithmsEquationsExponentsSolving EquationsAlgebraic Manipulation
2025/4/6

The problem asks us to find the values of $k$ for which the quadratic equation $x^2 - kx + 3 - k = 0...

Quadratic EquationsDiscriminantInequalitiesReal Roots
2025/4/5

The problem states that quadrilateral $ABCD$ has a perimeter of 95 centimeters. The side lengths are...

Linear EquationsGeometryPerimeterQuadrilaterals
2025/4/5