(a) log ( a 2 b c ) \log(a^2bc) log ( a 2 b c ) Using the logarithm product rule: log ( x y ) = log x + log y \log(xy) = \log x + \log y log ( x y ) = log x + log y log ( a 2 b c ) = log ( a 2 ) + log ( b ) + log ( c ) \log(a^2bc) = \log(a^2) + \log(b) + \log(c) log ( a 2 b c ) = log ( a 2 ) + log ( b ) + log ( c ) Using the power rule: log ( x n ) = n log x \log(x^n) = n\log x log ( x n ) = n log x log ( a 2 ) = 2 log a \log(a^2) = 2\log a log ( a 2 ) = 2 log a So, log ( a 2 b c ) = 2 log a + log b + log c \log(a^2bc) = 2\log a + \log b + \log c log ( a 2 b c ) = 2 log a + log b + log c Substituting the given values:
log ( a 2 b c ) = 2 ( 2 ) + ( − 1 ) + 3 2 = 4 − 1 + 3 2 = 3 + 3 2 = 6 2 + 3 2 = 9 2 = 4.5 \log(a^2bc) = 2(2) + (-1) + \frac{3}{2} = 4 - 1 + \frac{3}{2} = 3 + \frac{3}{2} = \frac{6}{2} + \frac{3}{2} = \frac{9}{2} = 4.5 log ( a 2 b c ) = 2 ( 2 ) + ( − 1 ) + 2 3 = 4 − 1 + 2 3 = 3 + 2 3 = 2 6 + 2 3 = 2 9 = 4.5
(b) log ( a 2 b c 3 ) \log(\frac{a^2}{bc^3}) log ( b c 3 a 2 ) Using the logarithm quotient rule: log ( x y ) = log x − log y \log(\frac{x}{y}) = \log x - \log y log ( y x ) = log x − log y log ( a 2 b c 3 ) = log ( a 2 ) − log ( b c 3 ) \log(\frac{a^2}{bc^3}) = \log(a^2) - \log(bc^3) log ( b c 3 a 2 ) = log ( a 2 ) − log ( b c 3 ) Using the logarithm product rule: log ( b c 3 ) = log b + log ( c 3 ) \log(bc^3) = \log b + \log(c^3) log ( b c 3 ) = log b + log ( c 3 ) Using the power rule: log ( c 3 ) = 3 log c \log(c^3) = 3\log c log ( c 3 ) = 3 log c log ( a 2 b c 3 ) = log ( a 2 ) − ( log b + 3 log c ) \log(\frac{a^2}{bc^3}) = \log(a^2) - (\log b + 3\log c) log ( b c 3 a 2 ) = log ( a 2 ) − ( log b + 3 log c ) Using the power rule: log ( a 2 ) = 2 log a \log(a^2) = 2\log a log ( a 2 ) = 2 log a log ( a 2 b c 3 ) = 2 log a − log b − 3 log c \log(\frac{a^2}{bc^3}) = 2\log a - \log b - 3\log c log ( b c 3 a 2 ) = 2 log a − log b − 3 log c Substituting the given values:
log ( a 2 b c 3 ) = 2 ( 2 ) − ( − 1 ) − 3 ( 3 2 ) = 4 + 1 − 9 2 = 5 − 9 2 = 10 2 − 9 2 = 1 2 = 0.5 \log(\frac{a^2}{bc^3}) = 2(2) - (-1) - 3(\frac{3}{2}) = 4 + 1 - \frac{9}{2} = 5 - \frac{9}{2} = \frac{10}{2} - \frac{9}{2} = \frac{1}{2} = 0.5 log ( b c 3 a 2 ) = 2 ( 2 ) − ( − 1 ) − 3 ( 2 3 ) = 4 + 1 − 2 9 = 5 − 2 9 = 2 10 − 2 9 = 2 1 = 0.5
(c) log ( a b c 3 ) \log(a \sqrt{\frac{b}{c^3}}) log ( a c 3 b ) log ( a b c 3 ) = log a + log ( b c 3 ) \log(a \sqrt{\frac{b}{c^3}}) = \log a + \log(\sqrt{\frac{b}{c^3}}) log ( a c 3 b ) = log a + log ( c 3 b ) Using the power rule: log ( b c 3 ) = log ( ( b c 3 ) 1 2 ) = 1 2 log ( b c 3 ) \log(\sqrt{\frac{b}{c^3}}) = \log((\frac{b}{c^3})^{\frac{1}{2}}) = \frac{1}{2} \log(\frac{b}{c^3}) log ( c 3 b ) = log (( c 3 b ) 2 1 ) = 2 1 log ( c 3 b ) Using the logarithm quotient rule: log ( b c 3 ) = log b − log ( c 3 ) \log(\frac{b}{c^3}) = \log b - \log(c^3) log ( c 3 b ) = log b − log ( c 3 ) Using the power rule: log ( c 3 ) = 3 log c \log(c^3) = 3\log c log ( c 3 ) = 3 log c log ( a b c 3 ) = log a + 1 2 ( log b − 3 log c ) \log(a \sqrt{\frac{b}{c^3}}) = \log a + \frac{1}{2}(\log b - 3\log c) log ( a c 3 b ) = log a + 2 1 ( log b − 3 log c ) Substituting the given values:
log ( a b c 3 ) = 2 + 1 2 ( − 1 − 3 ( 3 2 ) ) = 2 + 1 2 ( − 1 − 9 2 ) = 2 + 1 2 ( − 2 2 − 9 2 ) = 2 + 1 2 ( − 11 2 ) = 2 − 11 4 = 8 4 − 11 4 = − 3 4 = − 0.75 \log(a \sqrt{\frac{b}{c^3}}) = 2 + \frac{1}{2}(-1 - 3(\frac{3}{2})) = 2 + \frac{1}{2}(-1 - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{2}{2} - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{11}{2}) = 2 - \frac{11}{4} = \frac{8}{4} - \frac{11}{4} = -\frac{3}{4} = -0.75 log ( a c 3 b ) = 2 + 2 1 ( − 1 − 3 ( 2 3 )) = 2 + 2 1 ( − 1 − 2 9 ) = 2 + 2 1 ( − 2 2 − 2 9 ) = 2 + 2 1 ( − 2 11 ) = 2 − 4 11 = 4 8 − 4 11 = − 4 3 = − 0.75
(d) log ( 10 a c 3 b 2 ) \log(\frac{\sqrt{10ac^3}}{b^2}) log ( b 2 10 a c 3 ) log ( 10 a c 3 b 2 ) = log ( 10 a c 3 ) − log ( b 2 ) \log(\frac{\sqrt{10ac^3}}{b^2}) = \log(\sqrt{10ac^3}) - \log(b^2) log ( b 2 10 a c 3 ) = log ( 10 a c 3 ) − log ( b 2 ) log ( 10 a c 3 ) = log ( ( 10 a c 3 ) 1 2 ) = 1 2 log ( 10 a c 3 ) \log(\sqrt{10ac^3}) = \log((10ac^3)^{\frac{1}{2}}) = \frac{1}{2} \log(10ac^3) log ( 10 a c 3 ) = log (( 10 a c 3 ) 2 1 ) = 2 1 log ( 10 a c 3 ) log ( 10 a c 3 ) = log 10 + log a + log ( c 3 ) \log(10ac^3) = \log 10 + \log a + \log(c^3) log ( 10 a c 3 ) = log 10 + log a + log ( c 3 ) Assuming base 10 logarithm, log 10 = 1 \log 10 = 1 log 10 = 1 log ( c 3 ) = 3 log c \log(c^3) = 3\log c log ( c 3 ) = 3 log c log ( 10 a c 3 b 2 ) = 1 2 ( 1 + log a + 3 log c ) − 2 log b \log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + \log a + 3\log c) - 2\log b log ( b 2 10 a c 3 ) = 2 1 ( 1 + log a + 3 log c ) − 2 log b Substituting the given values:
log ( 10 a c 3 b 2 ) = 1 2 ( 1 + 2 + 3 ( 3 2 ) ) − 2 ( − 1 ) = 1 2 ( 3 + 9 2 ) + 2 = 1 2 ( 6 2 + 9 2 ) + 2 = 1 2 ( 15 2 ) + 2 = 15 4 + 2 = 15 4 + 8 4 = 23 4 = 5.75 \log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + 2 + 3(\frac{3}{2})) - 2(-1) = \frac{1}{2}(3 + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{6}{2} + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{15}{2}) + 2 = \frac{15}{4} + 2 = \frac{15}{4} + \frac{8}{4} = \frac{23}{4} = 5.75 log ( b 2 10 a c 3 ) = 2 1 ( 1 + 2 + 3 ( 2 3 )) − 2 ( − 1 ) = 2 1 ( 3 + 2 9 ) + 2 = 2 1 ( 2 6 + 2 9 ) + 2 = 2 1 ( 2 15 ) + 2 = 4 15 + 2 = 4 15 + 4 8 = 4 23 = 5.75