We are given the values of $\log a$, $\log b$, and $\log c$, and we are asked to evaluate four logarithmic expressions involving $a$, $b$, and $c$. Specifically, $\log a = 2$, $\log b = -1$, and $\log c = 1\frac{1}{2} = \frac{3}{2}$. We need to evaluate the following: (a) $\log(a^2bc)$ (b) $\log(\frac{a^2}{bc^3})$ (c) $\log(a \sqrt{\frac{b}{c^3}})$ (d) $\log(\frac{\sqrt{10ac^3}}{b^2})$

AlgebraLogarithmsLogarithm PropertiesExponents
2025/3/17

1. Problem Description

We are given the values of loga\log a, logb\log b, and logc\log c, and we are asked to evaluate four logarithmic expressions involving aa, bb, and cc.
Specifically, loga=2\log a = 2, logb=1\log b = -1, and logc=112=32\log c = 1\frac{1}{2} = \frac{3}{2}. We need to evaluate the following:
(a) log(a2bc)\log(a^2bc)
(b) log(a2bc3)\log(\frac{a^2}{bc^3})
(c) log(abc3)\log(a \sqrt{\frac{b}{c^3}})
(d) log(10ac3b2)\log(\frac{\sqrt{10ac^3}}{b^2})

2. Solution Steps

(a) log(a2bc)\log(a^2bc)
Using the logarithm product rule: log(xy)=logx+logy\log(xy) = \log x + \log y
log(a2bc)=log(a2)+log(b)+log(c)\log(a^2bc) = \log(a^2) + \log(b) + \log(c)
Using the power rule: log(xn)=nlogx\log(x^n) = n\log x
log(a2)=2loga\log(a^2) = 2\log a
So, log(a2bc)=2loga+logb+logc\log(a^2bc) = 2\log a + \log b + \log c
Substituting the given values:
log(a2bc)=2(2)+(1)+32=41+32=3+32=62+32=92=4.5\log(a^2bc) = 2(2) + (-1) + \frac{3}{2} = 4 - 1 + \frac{3}{2} = 3 + \frac{3}{2} = \frac{6}{2} + \frac{3}{2} = \frac{9}{2} = 4.5
(b) log(a2bc3)\log(\frac{a^2}{bc^3})
Using the logarithm quotient rule: log(xy)=logxlogy\log(\frac{x}{y}) = \log x - \log y
log(a2bc3)=log(a2)log(bc3)\log(\frac{a^2}{bc^3}) = \log(a^2) - \log(bc^3)
Using the logarithm product rule: log(bc3)=logb+log(c3)\log(bc^3) = \log b + \log(c^3)
Using the power rule: log(c3)=3logc\log(c^3) = 3\log c
log(a2bc3)=log(a2)(logb+3logc)\log(\frac{a^2}{bc^3}) = \log(a^2) - (\log b + 3\log c)
Using the power rule: log(a2)=2loga\log(a^2) = 2\log a
log(a2bc3)=2logalogb3logc\log(\frac{a^2}{bc^3}) = 2\log a - \log b - 3\log c
Substituting the given values:
log(a2bc3)=2(2)(1)3(32)=4+192=592=10292=12=0.5\log(\frac{a^2}{bc^3}) = 2(2) - (-1) - 3(\frac{3}{2}) = 4 + 1 - \frac{9}{2} = 5 - \frac{9}{2} = \frac{10}{2} - \frac{9}{2} = \frac{1}{2} = 0.5
(c) log(abc3)\log(a \sqrt{\frac{b}{c^3}})
log(abc3)=loga+log(bc3)\log(a \sqrt{\frac{b}{c^3}}) = \log a + \log(\sqrt{\frac{b}{c^3}})
Using the power rule: log(bc3)=log((bc3)12)=12log(bc3)\log(\sqrt{\frac{b}{c^3}}) = \log((\frac{b}{c^3})^{\frac{1}{2}}) = \frac{1}{2} \log(\frac{b}{c^3})
Using the logarithm quotient rule: log(bc3)=logblog(c3)\log(\frac{b}{c^3}) = \log b - \log(c^3)
Using the power rule: log(c3)=3logc\log(c^3) = 3\log c
log(abc3)=loga+12(logb3logc)\log(a \sqrt{\frac{b}{c^3}}) = \log a + \frac{1}{2}(\log b - 3\log c)
Substituting the given values:
log(abc3)=2+12(13(32))=2+12(192)=2+12(2292)=2+12(112)=2114=84114=34=0.75\log(a \sqrt{\frac{b}{c^3}}) = 2 + \frac{1}{2}(-1 - 3(\frac{3}{2})) = 2 + \frac{1}{2}(-1 - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{2}{2} - \frac{9}{2}) = 2 + \frac{1}{2}(-\frac{11}{2}) = 2 - \frac{11}{4} = \frac{8}{4} - \frac{11}{4} = -\frac{3}{4} = -0.75
(d) log(10ac3b2)\log(\frac{\sqrt{10ac^3}}{b^2})
log(10ac3b2)=log(10ac3)log(b2)\log(\frac{\sqrt{10ac^3}}{b^2}) = \log(\sqrt{10ac^3}) - \log(b^2)
log(10ac3)=log((10ac3)12)=12log(10ac3)\log(\sqrt{10ac^3}) = \log((10ac^3)^{\frac{1}{2}}) = \frac{1}{2} \log(10ac^3)
log(10ac3)=log10+loga+log(c3)\log(10ac^3) = \log 10 + \log a + \log(c^3)
Assuming base 10 logarithm, log10=1\log 10 = 1
log(c3)=3logc\log(c^3) = 3\log c
log(10ac3b2)=12(1+loga+3logc)2logb\log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + \log a + 3\log c) - 2\log b
Substituting the given values:
log(10ac3b2)=12(1+2+3(32))2(1)=12(3+92)+2=12(62+92)+2=12(152)+2=154+2=154+84=234=5.75\log(\frac{\sqrt{10ac^3}}{b^2}) = \frac{1}{2}(1 + 2 + 3(\frac{3}{2})) - 2(-1) = \frac{1}{2}(3 + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{6}{2} + \frac{9}{2}) + 2 = \frac{1}{2}(\frac{15}{2}) + 2 = \frac{15}{4} + 2 = \frac{15}{4} + \frac{8}{4} = \frac{23}{4} = 5.75

3. Final Answer

(a) log(a2bc)=4.5\log(a^2bc) = 4.5
(b) log(a2bc3)=0.5\log(\frac{a^2}{bc^3}) = 0.5
(c) log(abc3)=0.75\log(a \sqrt{\frac{b}{c^3}}) = -0.75
(d) log(10ac3b2)=5.75\log(\frac{\sqrt{10ac^3}}{b^2}) = 5.75

Related problems in "Algebra"

Given vectors $s = -i + 2j$, $t = 3i - j$, and $r = 2i + 5j$, find: (a) $s+t$ (b) $r-s$ (c) $2t+r$

VectorsVector AdditionVector SubtractionScalar Multiplication
2025/7/2

The image contains a set of equations. The task is to solve each equation for the variable $a$. I wi...

EquationsSolving EquationsLinear EquationsVariable Isolation
2025/7/1

The problem consists of several equations. We need to solve for the variable $a$ in each equation. ...

Linear EquationsSolving Equations
2025/7/1

We are given the equation $C - a = E$ and are asked to solve for $a$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The problem is to solve the equation $C - a = E$ for $C$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The image presents a series of algebraic equations. I will solve problem number 41, which asks to so...

Linear EquationsSolving EquationsVariables
2025/7/1

We are given the function $y = a \sin \theta + b \cos \theta$ where $0 \le \theta < 2\pi$. The funct...

TrigonometryMaximum and Minimum ValuesTrigonometric FunctionsAmplitude and Phase Shift
2025/6/30

The problem has two parts. Part 1: Given a quadratic equation $7x^2 - 2x + 1 = 0$ with roots $a$ and...

Quadratic EquationsRoots of EquationsGeometric ProgressionSequences and Series
2025/6/30

The problem asks to simplify the expression $\sqrt{48} - \sqrt{75} + \sqrt{12}$ and find the correct...

SimplificationRadicalsSquare Roots
2025/6/30

The problem asks to find the analytical expression of the function $f(x)$ whose graph is shown. The ...

Piecewise FunctionsParabolaLinear EquationsHyperbolaFunction Analysis
2025/6/29