(a) log10(x2+13x)=1+log10(1+x) log10(x2+13x)=log1010+log10(1+x) log10(x2+13x)=log10(10(1+x)) x2+13x=10(1+x) x2+13x=10+10x x2+3x−10=0 (x+5)(x−2)=0 x=−5 or x=2 Since the logarithm is only defined for positive arguments, we need to check the solutions.
If x=−5, then 1+x=−4, which is not allowed since log10(1+x) would not be defined. If x=2, then x2+13x=4+26=30>0 and 1+x=3>0. So x=2 is a valid solution. (b) 1+log2(x2−4x−16)=log2(x2−3x+4) log22+log2(x2−4x−16)=log2(x2−3x+4) log2(2(x2−4x−16))=log2(x2−3x+4) 2(x2−4x−16)=x2−3x+4 2x2−8x−32=x2−3x+4 x2−5x−36=0 (x−9)(x+4)=0 x=9 or x=−4 If x=9, then x2−4x−16=81−36−16=29>0 and x2−3x+4=81−27+4=58>0. So x=9 is a valid solution. If x=−4, then x2−4x−16=16+16−16=16>0 and x2−3x+4=16+12+4=32>0. So x=−4 is a valid solution. (c) 2(log2x−1)=log2y, where y=x−1 2log2x−2=log2(x−1) log2x2−log24=log2(x−1) log24x2=log2(x−1) 4x2=x−1 x2=4x−4 x2−4x+4=0 (x−2)2=0 If x=2, then x>0 and y=x−1=2−1=1>0. So x=2 is a valid solution.