The problem is to simplify the expression: $\frac{2x-5}{x^2-1} + \frac{x^2-9}{x^2+3x-4} \times \frac{x^2-x-20}{x^2-2x-15}$.

AlgebraAlgebraic SimplificationRational ExpressionsFactorizationPolynomials
2025/4/25

1. Problem Description

The problem is to simplify the expression: 2x5x21+x29x2+3x4×x2x20x22x15\frac{2x-5}{x^2-1} + \frac{x^2-9}{x^2+3x-4} \times \frac{x^2-x-20}{x^2-2x-15}.

2. Solution Steps

First, we factorize the quadratic expressions:
x21=(x1)(x+1)x^2 - 1 = (x-1)(x+1)
x29=(x3)(x+3)x^2 - 9 = (x-3)(x+3)
x2+3x4=(x+4)(x1)x^2 + 3x - 4 = (x+4)(x-1)
x2x20=(x5)(x+4)x^2 - x - 20 = (x-5)(x+4)
x22x15=(x5)(x+3)x^2 - 2x - 15 = (x-5)(x+3)
Now, we substitute these factorizations into the expression:
2x5(x1)(x+1)+(x3)(x+3)(x+4)(x1)×(x5)(x+4)(x5)(x+3)\frac{2x-5}{(x-1)(x+1)} + \frac{(x-3)(x+3)}{(x+4)(x-1)} \times \frac{(x-5)(x+4)}{(x-5)(x+3)}
We simplify the multiplication part:
(x3)(x+3)(x+4)(x1)×(x5)(x+4)(x5)(x+3)=(x3)(x+3)(x5)(x+4)(x+4)(x1)(x5)(x+3)\frac{(x-3)(x+3)}{(x+4)(x-1)} \times \frac{(x-5)(x+4)}{(x-5)(x+3)} = \frac{(x-3)(x+3)(x-5)(x+4)}{(x+4)(x-1)(x-5)(x+3)}
We cancel out the common terms (x+3)(x+3), (x+4)(x+4), and (x5)(x-5):
(x3)(x+3)(x5)(x+4)(x+4)(x1)(x5)(x+3)=x3x1\frac{(x-3)(x+3)(x-5)(x+4)}{(x+4)(x-1)(x-5)(x+3)} = \frac{x-3}{x-1}
Now the expression becomes:
2x5(x1)(x+1)+x3x1\frac{2x-5}{(x-1)(x+1)} + \frac{x-3}{x-1}
To add the two terms, we need a common denominator, which is (x1)(x+1)(x-1)(x+1):
2x5(x1)(x+1)+(x3)(x+1)(x1)(x+1)=2x5+(x3)(x+1)(x1)(x+1)\frac{2x-5}{(x-1)(x+1)} + \frac{(x-3)(x+1)}{(x-1)(x+1)} = \frac{2x-5 + (x-3)(x+1)}{(x-1)(x+1)}
Expand the term (x3)(x+1)(x-3)(x+1):
(x3)(x+1)=x2+x3x3=x22x3(x-3)(x+1) = x^2 + x - 3x - 3 = x^2 - 2x - 3
Substitute back into the expression:
2x5+x22x3(x1)(x+1)=x28(x1)(x+1)=x28x21\frac{2x-5 + x^2 - 2x - 3}{(x-1)(x+1)} = \frac{x^2 - 8}{(x-1)(x+1)} = \frac{x^2 - 8}{x^2 - 1}

3. Final Answer

x28x21\frac{x^2-8}{x^2-1}

Related problems in "Algebra"