First, we factorize the quadratic expressions:
x2−1=(x−1)(x+1) x2−9=(x−3)(x+3) x2+3x−4=(x+4)(x−1) x2−x−20=(x−5)(x+4) x2−2x−15=(x−5)(x+3) Now, we substitute these factorizations into the expression:
(x−1)(x+1)2x−5+(x+4)(x−1)(x−3)(x+3)×(x−5)(x+3)(x−5)(x+4) We simplify the multiplication part:
(x+4)(x−1)(x−3)(x+3)×(x−5)(x+3)(x−5)(x+4)=(x+4)(x−1)(x−5)(x+3)(x−3)(x+3)(x−5)(x+4) We cancel out the common terms (x+3), (x+4), and (x−5): (x+4)(x−1)(x−5)(x+3)(x−3)(x+3)(x−5)(x+4)=x−1x−3 Now the expression becomes:
(x−1)(x+1)2x−5+x−1x−3 To add the two terms, we need a common denominator, which is (x−1)(x+1): (x−1)(x+1)2x−5+(x−1)(x+1)(x−3)(x+1)=(x−1)(x+1)2x−5+(x−3)(x+1) Expand the term (x−3)(x+1): (x−3)(x+1)=x2+x−3x−3=x2−2x−3 Substitute back into the expression:
(x−1)(x+1)2x−5+x2−2x−3=(x−1)(x+1)x2−8=x2−1x2−8