We are asked to simplify the expression $(\frac{a-3}{a} - \frac{a-3}{a^2 - 2a})^{a-2} : \frac{a-3}{a}$.

AlgebraAlgebraic SimplificationExponentsRational Expressions
2025/4/27

1. Problem Description

We are asked to simplify the expression (a3aa3a22a)a2:a3a(\frac{a-3}{a} - \frac{a-3}{a^2 - 2a})^{a-2} : \frac{a-3}{a}.

2. Solution Steps

First, let's simplify the expression inside the parenthesis.
a3aa3a22a\frac{a-3}{a} - \frac{a-3}{a^2 - 2a}
Factor the denominator of the second fraction: a22a=a(a2)a^2 - 2a = a(a-2).
a3aa3a(a2)\frac{a-3}{a} - \frac{a-3}{a(a-2)}
Find a common denominator, which is a(a2)a(a-2).
(a3)(a2)a(a2)a3a(a2)\frac{(a-3)(a-2)}{a(a-2)} - \frac{a-3}{a(a-2)}
Combine the fractions:
(a3)(a2)(a3)a(a2)\frac{(a-3)(a-2) - (a-3)}{a(a-2)}
Factor out (a3)(a-3) from the numerator:
(a3)(a21)a(a2)\frac{(a-3)(a-2-1)}{a(a-2)}
(a3)(a3)a(a2)\frac{(a-3)(a-3)}{a(a-2)}
(a3)2a(a2)\frac{(a-3)^2}{a(a-2)}
Now, consider the entire expression:
((a3)2a(a2))a2:a3a(\frac{(a-3)^2}{a(a-2)})^{a-2} : \frac{a-3}{a}
((a3)2a(a2))a2aa3(\frac{(a-3)^2}{a(a-2)})^{a-2} \cdot \frac{a}{a-3}
(a3)2(a2)aa2(a2)a2aa3\frac{(a-3)^{2(a-2)}}{a^{a-2}(a-2)^{a-2}} \cdot \frac{a}{a-3}
(a3)2a4aa2(a2)a2aa3\frac{(a-3)^{2a-4}}{a^{a-2}(a-2)^{a-2}} \cdot \frac{a}{a-3}
(a3)2a4aaa2(a2)a2(a3)\frac{(a-3)^{2a-4} a}{a^{a-2} (a-2)^{a-2} (a-3)}
(a3)2a5aaa2(a2)a2\frac{(a-3)^{2a-5} a}{a^{a-2} (a-2)^{a-2}}
(a3)2a5aa3(a2)a2\frac{(a-3)^{2a-5}}{a^{a-3} (a-2)^{a-2}}

3. Final Answer

(a3)2a5aa3(a2)a2\frac{(a-3)^{2a-5}}{a^{a-3}(a-2)^{a-2}}

Related problems in "Algebra"

The problem is to solve for $t$ in the equation $6.63 = 15[1 - e^{-t/10}]$.

Exponential EquationsLogarithmsEquation Solving
2025/6/21

We are given the equation $48x^3 = [2^{(2x)^3}]^2$ and we need to solve for $x$.

EquationsExponentsLogarithmsNumerical Solution
2025/6/20

We are asked to solve the quadratic equation $x^2 + x - 1 = 0$ for $x$.

Quadratic EquationsQuadratic FormulaRoots of Equations
2025/6/20

Solve the equation $\frac{x+1}{201} + \frac{x+2}{200} + \frac{x+3}{199} = -3$.

Linear EquationsEquation Solving
2025/6/20

The problem is to expand the given binomial expressions. The expressions are: 1. $(x + 1)(x + 3)$

Polynomial ExpansionBinomial ExpansionFOILDifference of Squares
2025/6/19

The problem is to remove the brackets and simplify the given expressions. I will solve question numb...

Algebraic ManipulationExpansionDifference of Squares
2025/6/19

We need to remove the brackets and collect like terms for the given expressions. I will solve proble...

Algebraic simplificationLinear expressionsCombining like termsDistribution
2025/6/19

The problem asks us to solve the equation $\lfloor 2x^3 - x^2 \rceil = 18x - 9$ for $x \in \mathbb{R...

EquationsCeiling FunctionReal NumbersCubic Equations
2025/6/19

The problem consists of 8 sub-problems. Each sub-problem contains an equation and a variable in pare...

Equation SolvingVariable IsolationFormula Manipulation
2025/6/19

The problem provides the equation of a parabola, $y = 3 - 2x - x^2$. We need to find the coordinates...

Quadratic EquationsParabolax-interceptTurning PointCoordinate Geometry
2025/6/19