First, let's simplify the expression inside the parenthesis.
aa−3−a2−2aa−3 Factor the denominator of the second fraction: a2−2a=a(a−2). aa−3−a(a−2)a−3 Find a common denominator, which is a(a−2). a(a−2)(a−3)(a−2)−a(a−2)a−3 Combine the fractions:
a(a−2)(a−3)(a−2)−(a−3) Factor out (a−3) from the numerator: a(a−2)(a−3)(a−2−1) a(a−2)(a−3)(a−3) a(a−2)(a−3)2 Now, consider the entire expression:
(a(a−2)(a−3)2)a−2:aa−3 (a(a−2)(a−3)2)a−2⋅a−3a aa−2(a−2)a−2(a−3)2(a−2)⋅a−3a aa−2(a−2)a−2(a−3)2a−4⋅a−3a aa−2(a−2)a−2(a−3)(a−3)2a−4a aa−2(a−2)a−2(a−3)2a−5a aa−3(a−2)a−2(a−3)2a−5