First, we simplify the numerator of the first fraction:
a−3a−1=a−3a−a−3a−3=a−3a−(a−3)=a−3a−a+3=a−33. Now, we can rewrite the expression as:
a−3a−2a−33⋅a−3a. We simplify the first part of the expression by dividing the two fractions:
a−3a−2a−33=a−33÷a−3a−2=a−33⋅a−2a−3=(a−3)(a−2)3(a−3). Assuming a=3, we can cancel out (a−3): Now, we multiply the result by a−3a: a−23⋅a−3a=(a−2)(a−3)3a=a2−3a−2a+63a=a2−5a+63a.