The problem asks to simplify the following expression: $\frac{\frac{a}{a-3}}{1-\frac{a^2-2a}{a-3}} \div \frac{a}{a-3}$

AlgebraAlgebraic simplificationRational expressionsExpression manipulation
2025/4/27

1. Problem Description

The problem asks to simplify the following expression:
aa31a22aa3÷aa3\frac{\frac{a}{a-3}}{1-\frac{a^2-2a}{a-3}} \div \frac{a}{a-3}

2. Solution Steps

First, simplify the denominator of the main fraction:
1a22aa3=a3a3a22aa3=a3(a22a)a3=a3a2+2aa3=a2+3a3a31-\frac{a^2-2a}{a-3} = \frac{a-3}{a-3} - \frac{a^2-2a}{a-3} = \frac{a-3-(a^2-2a)}{a-3} = \frac{a-3-a^2+2a}{a-3} = \frac{-a^2+3a-3}{a-3}
Now, the main fraction becomes:
aa3a2+3a3a3=aa3a3a2+3a3=aa2+3a3\frac{\frac{a}{a-3}}{\frac{-a^2+3a-3}{a-3}} = \frac{a}{a-3} \cdot \frac{a-3}{-a^2+3a-3} = \frac{a}{-a^2+3a-3}
Next, we have to divide the result by aa3\frac{a}{a-3}. This is equivalent to multiplying by the reciprocal:
aa2+3a3÷aa3=aa2+3a3a3a=a(a3)a(a2+3a3)\frac{a}{-a^2+3a-3} \div \frac{a}{a-3} = \frac{a}{-a^2+3a-3} \cdot \frac{a-3}{a} = \frac{a(a-3)}{a(-a^2+3a-3)}
We can cancel out aa from the numerator and denominator:
a(a3)a(a2+3a3)=a3a2+3a3\frac{a(a-3)}{a(-a^2+3a-3)} = \frac{a-3}{-a^2+3a-3}
Therefore the simplified expression is a3a2+3a3\frac{a-3}{-a^2+3a-3}.
Multiplying top and bottom by 1-1 gives 3aa23a+3\frac{3-a}{a^2-3a+3}

3. Final Answer

3aa23a+3\frac{3-a}{a^2-3a+3}