First, simplify the denominator of the main fraction:
1−a−3a2−2a=a−3a−3−a−3a2−2a=a−3a−3−(a2−2a)=a−3a−3−a2+2a=a−3−a2+3a−3 Now, the main fraction becomes:
a−3−a2+3a−3a−3a=a−3a⋅−a2+3a−3a−3=−a2+3a−3a Next, we have to divide the result by a−3a. This is equivalent to multiplying by the reciprocal: −a2+3a−3a÷a−3a=−a2+3a−3a⋅aa−3=a(−a2+3a−3)a(a−3) We can cancel out a from the numerator and denominator: a(−a2+3a−3)a(a−3)=−a2+3a−3a−3 Therefore the simplified expression is −a2+3a−3a−3. Multiplying top and bottom by −1 gives a2−3a+33−a