The problem asks us to complete the square for the quadratic expression $3x^2 + 9x + 4$.

AlgebraQuadratic EquationsCompleting the SquareAlgebraic Manipulation
2025/6/23

1. Problem Description

The problem asks us to complete the square for the quadratic expression 3x2+9x+43x^2 + 9x + 4.

2. Solution Steps

First, factor out the coefficient of the x2x^2 term (which is 3) from the terms containing x2x^2 and xx:
3x2+9x+4=3(x2+3x)+43x^2 + 9x + 4 = 3(x^2 + 3x) + 4
To complete the square for the expression inside the parentheses, x2+3xx^2 + 3x, we need to add and subtract (32)2=94(\frac{3}{2})^2 = \frac{9}{4} inside the parentheses:
3(x2+3x+9494)+43(x^2 + 3x + \frac{9}{4} - \frac{9}{4}) + 4
Now, rewrite the expression as:
3((x+32)294)+43((x + \frac{3}{2})^2 - \frac{9}{4}) + 4
Distribute the 3:
3(x+32)23(94)+43(x + \frac{3}{2})^2 - 3(\frac{9}{4}) + 4
3(x+32)2274+1643(x + \frac{3}{2})^2 - \frac{27}{4} + \frac{16}{4}
Combine the constant terms:
3(x+32)21143(x + \frac{3}{2})^2 - \frac{11}{4}

3. Final Answer

3(x+32)21143(x + \frac{3}{2})^2 - \frac{11}{4}

Related problems in "Algebra"