The problem is to simplify the expression $\frac{2\sqrt{2}}{\sqrt{5} - \sqrt{3}}$. This requires rationalizing the denominator.
2025/3/17
1. Problem Description
The problem is to simplify the expression . This requires rationalizing the denominator.
2. Solution Steps
To rationalize the denominator, we multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of is .
\frac{2\sqrt{2}}{\sqrt{5} - \sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{5} - \sqrt{3}} \cdot \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}
Now, multiply the numerators and denominators:
\frac{2\sqrt{2}(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}
Using the difference of squares formula, , the denominator becomes:
(\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2
The numerator becomes:
2\sqrt{2}(\sqrt{5} + \sqrt{3}) = 2(\sqrt{2}\sqrt{5} + \sqrt{2}\sqrt{3}) = 2(\sqrt{10} + \sqrt{6}) = 2\sqrt{10} + 2\sqrt{6}
So we have:
\frac{2\sqrt{10} + 2\sqrt{6}}{2}
Divide both terms in the numerator by 2:
\frac{2\sqrt{10}}{2} + \frac{2\sqrt{6}}{2} = \sqrt{10} + \sqrt{6}
3. Final Answer
The simplified expression is .