Let y=vx, where v is a function of x. Then, dxdy=v+xdxdv. The given differential equation is:
y′=xyx2+2y2 Substituting y=vx and y′=v+xdxdv into the equation, we have: v+xdxdv=x(vx)x2+2(vx)2=vx2x2+2v2x2=vx2x2(1+2v2)=v1+2v2=v1+2v Thus,
xdxdv=v1+2v−v=v1+v=v1+v2 Separating variables, we get:
1+v2vdv=x1dx Integrating both sides, we have:
∫1+v2vdv=∫x1dx Let u=1+v2, so du=2vdv. Then 21du=vdv. ∫2u1du=∫x1dx 21ln∣u∣=ln∣x∣+C 21ln(1+v2)=ln∣x∣+C ln(1+v2)=2ln∣x∣+2C ln(1+v2)=ln(x2)+ln(e2C) ln(1+v2)=ln(x2e2C) 1+v2=x2e2C 1+v2=Kx2, where K=e2C is a constant. Substituting v=xy, we have: 1+(xy)2=Kx2 1+x2y2=Kx2 Multiplying by x2, we get: x2+y2=Kx4 y2=Kx4−x2 y2=x2(Kx2−1) y=±xKx2−1