We can rewrite the differential equation as:
xdxdy=−3x−y dxdy=−x3x−xy dxdy=−3−xy Let v=xy. Then y=vx. Differentiating with respect to x, we get dxdy=v+xdxdv Substituting into the differential equation, we have
v+xdxdv=−3−v xdxdv=−3−2v dxdv=x−3−2v −3−2vdv=xdx ∫−3−2vdv=∫xdx −21∫−3−2v−2dv=∫xdx −21ln∣−3−2v∣=ln∣x∣+C1 ln∣−3−2v∣=−2ln∣x∣+C2, where C2=−2C1 ln∣−3−2v∣=ln∣x−2∣+C2 ∣−3−2v∣=eln∣x−2∣+C2=eln∣x−2∣eC2=∣x−2∣eC2 −3−2v=±eC2x−2=Cx−2, where C=±eC2. −3−2(xy)=x2C −3−x2y=x2C −3x2−2xy=C 3x2+2xy=−C 3x2+2xy=K