First, we rewrite the equation:
(x−y)dxdy=−x−y dxdy=x−y−x−y=x−y−(x+y)=y−xx+y Let y=vx, then dxdy=v+xdxdv. Substituting into the equation, we have:
v+xdxdv=vx−xx+vx=x(v−1)x(1+v)=v−11+v xdxdv=v−11+v−v=v−11+v−v(v−1)=v−11+v−v2+v=v−1−v2+2v+1 −v2+2v+1v−1dv=xdx Integrate both sides. Let u=−v2+2v+1, then du=(−2v+2)dv=−2(v−1)dv. So, (v−1)dv=−21du. ∫−v2+2v+1v−1dv=∫u−21du=−21∫udu=−21ln∣u∣+C=−21ln∣−v2+2v+1∣+C ∫xdx=ln∣x∣+C Therefore, we have
−21ln∣−v2+2v+1∣=ln∣x∣+C Multiply both sides by -2:
ln∣−v2+2v+1∣=−2ln∣x∣+C′ where C′=−2C ln∣−v2+2v+1∣=ln∣x−2∣+C′ ∣−v2+2v+1∣=eln∣x−2∣+C′=eln∣x−2∣eC′=∣x−2∣eC′ −v2+2v+1=Cx−2 −(xy)2+2(xy)+1=Cx−2 −x2y2+x2y+1=x2C −y2+2xy+x2=C x2+2xy−y2=C