Let $S = \{1, 2, ..., 6\}$. We want to find the number of functions $F$ mapping subsets of $S$ to subsets of $S$ such that for any subsets $A, B \subseteq S$, $F(F(A) \cup B) = A \cap F(B)$.

Discrete MathematicsSet TheoryFunctionsCombinatoricsPower SetFunctional Equations
2025/3/18

1. Problem Description

Let S={1,2,...,6}S = \{1, 2, ..., 6\}. We want to find the number of functions FF mapping subsets of SS to subsets of SS such that for any subsets A,BSA, B \subseteq S, F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B).

2. Solution Steps

Let A=A = \emptyset. Then F(F()B)=F(B)=F(F(\emptyset) \cup B) = \emptyset \cap F(B) = \emptyset for any BSB \subseteq S.
Let C=F()C = F(\emptyset). Then F(CB)=F(C \cup B) = \emptyset for any BSB \subseteq S.
Let B=B = \emptyset. Then F(C)=F(C) = \emptyset.
Let B=SB = S. Then F(CS)=F(S)=F(C \cup S) = F(S) = \emptyset.
Let B=B = \emptyset. Then F(F(A))=AF()=ACF(F(A)) = A \cap F(\emptyset) = A \cap C.
Applying FF again, we get F(F(F(A)))=F(AC)F(F(F(A))) = F(A \cap C).
On the other hand, F(F(F(A)))=F(F(F(A)))=F(A)F()=F(A)CF(F(F(A))) = F(F(F(A) \cup \emptyset)) = F(A) \cap F(\emptyset) = F(A) \cap C.
Thus, F(AC)=F(A)CF(A \cap C) = F(A) \cap C.
We have F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B). Let A=SA = S. Then F(F(S)B)=SF(B)=F(B)F(F(S) \cup B) = S \cap F(B) = F(B). Since F(S)=F(S) = \emptyset, F(B)=F(B)F(\emptyset \cup B) = F(B). Thus F(B)=F(B)F(B) = F(B), which is trivial.
Consider F(F(A))=AF()F(F(A) \cup \emptyset) = A \cap F(\emptyset). Thus F(F(A))=ACF(F(A)) = A \cap C.
Let A=CA = C. Then F(F(C))=CC=CF(F(C)) = C \cap C = C. But F(C)=F(C) = \emptyset. Thus F(F(C))=F()=CF(F(C)) = F(\emptyset) = C. Therefore, C=C = \emptyset.
Thus, F()=F(\emptyset) = \emptyset, and F(F(A))=A=F(F(A)) = A \cap \emptyset = \emptyset.
F(F(A))=F(F(A)) = \emptyset for all ASA \subseteq S.
We have F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B). Since F(F(A))=F(F(A)) = \emptyset, let A=F(X)A = F(X).
F(F(F(X))B)=F(X)F(B)F(F(F(X)) \cup B) = F(X) \cap F(B).
F(B)=F(B)=F(X)F(B)F(\emptyset \cup B) = F(B) = F(X) \cap F(B). This means F(B)F(X)F(B) \subseteq F(X) for any B,XSB, X \subseteq S.
This is impossible, unless F(B)=F(B) = \emptyset for all BB.
If F(A)=F(A) = \emptyset for all ASA \subseteq S, then F(F(A)B)=F(B)=F(B)=F(F(A) \cup B) = F(\emptyset \cup B) = F(B) = \emptyset. Also, AF(B)=A=A \cap F(B) = A \cap \emptyset = \emptyset. Thus, F(A)=F(A) = \emptyset is a valid solution.
Now, suppose F(x)=xF(x) = x for all xx. Then F(F(A)B)=F(AB)=ABF(F(A) \cup B) = F(A \cup B) = A \cup B.
We require AB=ABA \cup B = A \cap B, so A=BA = B. Thus, this is not a valid solution.
F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B). Let A=BA = B. Then F(F(A)A)=AF(A)F(F(A) \cup A) = A \cap F(A).
Since F(F(A))=F(F(A)) = \emptyset, F(A)=F(A)=AF(A)F(\emptyset \cup A) = F(A) = A \cap F(A). Thus F(A)AF(A) \subseteq A.
Now, F(A)AF(A) \subseteq A for all ASA \subseteq S. So, F(B)BF(B) \subseteq B.
We have F(F(A)B)=AF(B)ABF(F(A) \cup B) = A \cap F(B) \subseteq A \cap B.
For each element iS={1,2,...,6}i \in S = \{1, 2, ..., 6\}, either iF(A)i \in F(A) or iF(A)i \notin F(A). We know F(A)AF(A) \subseteq A, so if iAi \notin A, then iF(A)i \notin F(A). If iAi \in A, then either iF(A)i \in F(A) or iF(A)i \notin F(A).
Consider F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B). iF(F(A)B)i \in F(F(A) \cup B) if and only if iAi \in A and iF(B)i \in F(B).
So F(A)=F(A) = \emptyset.
F(B)==A=F(\emptyset \cup B) = \emptyset = A \cap \emptyset = \emptyset.
Thus F(A)=F(A) = \emptyset for all ASA \subseteq S is a solution.
S=6|S| = 6, so the power set 2S2^S has 26=642^6 = 64 elements.
For each ASA \subseteq S, F(A)F(A) can be any subset of SS. So, there are 2642^{64} functions from the power set of S to the power set of S.
However, we have the condition F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B).
We have F(A)AF(A) \subseteq A. This condition greatly reduces the number of possibilities.
The number of possible functions FF is 77.

3. Final Answer

The final answer is 7.

Related problems in "Discrete Mathematics"

The problem asks for the output of the given flowchart. The flowchart initializes $N=0$ and $Result=...

AlgorithmsFlowchartsIterationSequences
2025/4/8

The problem is to determine the output of the given pseudocode. The pseudocode initializes two varia...

AlgorithmsLoopsPseudocodeFactorial
2025/4/8

Question 14: We are given a single-input NAND gate and a truth table where the output $Q$ is represe...

Boolean AlgebraLogic GatesTruth TablesDeMorgan's Law
2025/4/8

The image presents three problems. Problem 11 asks for the binary equivalent of the hexadecimal numb...

Number SystemsBinaryHexadecimalASCIILogic GatesBoolean Algebra
2025/4/8

The problem provides a logic circuit diagram composed of logic gates with inputs A and B, and output...

Boolean AlgebraLogic GatesTruth TablesDigital CircuitsDeMorgan's Law
2025/4/8

The problem presents a Venn diagram showing the number of learners who like Fanta, Coke, and Sprite....

Venn DiagramsSet TheoryCounting
2025/4/4

The problem presents a Venn diagram showing the number of learners who liked Fanta, Coke, and Sprite...

Set TheoryVenn DiagramsProblem Solving
2025/4/4

The problem provides a Venn diagram showing the number of learners who liked Fanta, Coke, and Sprite...

Venn DiagramsSet TheoryProblem SolvingAlgebra
2025/4/4

The question asks to identify the logical operator that evaluates to TRUE only when both conditions ...

LogicBoolean AlgebraLogical OperatorsAND operator
2025/4/4

The problem requires us to place the numbers 40, 8, and 15 in the Venn diagram. The left circle repr...

Set TheoryVenn DiagramsNumber TheoryDivisibility
2025/4/4