Let $S = \{1, 2, ..., 6\}$. We want to find the number of functions $F$ that map subsets of $S$ to subsets of $S$, such that for any subsets $A, B \subseteq S$, we have $F(F(A) \cup B) = A \cap F(B)$.

Discrete MathematicsSet TheoryFunctional EquationsCombinatorics
2025/3/18

1. Problem Description

Let S={1,2,...,6}S = \{1, 2, ..., 6\}. We want to find the number of functions FF that map subsets of SS to subsets of SS, such that for any subsets A,BSA, B \subseteq S, we have F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B).

2. Solution Steps

Let A=A = \emptyset. Then the given condition becomes
F(F()B)=F(B)=F(F(\emptyset) \cup B) = \emptyset \cap F(B) = \emptyset.
This means that F()BF(\emptyset) \cup B is always mapped to \emptyset by FF. Let C=F()BC = F(\emptyset) \cup B.
F(C)=F(C) = \emptyset.
If B=B = \emptyset, then C=F()C = F(\emptyset), and we get F(F())=F(F(\emptyset)) = \emptyset.
Let B=SB = S. Then F()S=SF(\emptyset) \cup S = S, which implies F(S)=F(S) = \emptyset.
Let A=SA = S. Then F(F(S)B)=SF(B)F(F(S) \cup B) = S \cap F(B).
Since F(S)=F(S) = \emptyset, we have F(B)=F(B)=SF(B)=F(B)F(\emptyset \cup B) = F(B) = S \cap F(B) = F(B).
This doesn't give us new information.
Let B=B = \emptyset. Then F(F(A))=F(F(A))=AF()F(F(A) \cup \emptyset) = F(F(A)) = A \cap F(\emptyset).
We also know that F(F())=F(F(\emptyset)) = \emptyset.
Let A=F()A = F(\emptyset). Then F(F(F()))=F()F()F(F(F(\emptyset))) = F(\emptyset) \cap F(\emptyset).
So F()=F()F()=F()F(\emptyset) = F(\emptyset) \cap F(\emptyset) = F(\emptyset), which is trivial.
Let A=SA=S. Then F(F(S)B)=F(B)=F(B)=SF(B)=F(B)F(F(S) \cup B) = F(\emptyset \cup B) = F(B) = S \cap F(B) = F(B). This is also trivial.
Consider F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B).
Let A=BA = B. Then F(F(A)A)=AF(A)F(F(A) \cup A) = A \cap F(A).
If F(A)AF(A) \subseteq A, then F(A)A=AF(A) \cup A = A, and F(F(A)A)=F(A)F(F(A) \cup A) = F(A). So F(A)=AF(A)=F(A)F(A) = A \cap F(A) = F(A).
However, if AF(A)A \subseteq F(A), then F(A)A=F(A)F(A) \cup A = F(A), and F(F(A)A)=F(F(A))F(F(A) \cup A) = F(F(A)).
So F(F(A))=AF(A)=AF(F(A)) = A \cap F(A) = A.
We also know that F(S)=F(S) = \emptyset.
Let A=B=SA=B=S. Then F(F(S)S)=SF(S)F(F(S)\cup S) = S \cap F(S), so F(S)=F(S)=S=F(\emptyset \cup S) = F(S) = S \cap \emptyset = \emptyset.
F(S)=F(S) = \emptyset.
We want to find the number of functions FF.
For each xSx \in S, we either have xF(A)x \in F(A) or xF(A)x \notin F(A).
We know that F(S)=F(S) = \emptyset, which implies that xF(S)x \notin F(S) for all xSx \in S.
We also know that F()F(\emptyset) is crucial.
Suppose F()={1,2,...,k}F(\emptyset) = \{1, 2, ..., k\}.
Let xSx \in S. For each element xx, either xF()x \in F(\emptyset) or xF()x \notin F(\emptyset).
If xAx \in A, then xAF(B)x \in A \cap F(B). If xAx \notin A, then xAF(B)x \notin A \cap F(B).
For each xx, consider A={x}A=\{x\}, B=B = \emptyset.
Then F(F({x}))={x}F()F(F(\{x\}) \cup \emptyset) = \{x\} \cap F(\emptyset), which implies F(F({x}))={x}F()F(F(\{x\})) = \{x\} \cap F(\emptyset).
If xF()x \in F(\emptyset), then F(F({x}))={x}F(F(\{x\})) = \{x\}.
If xF()x \notin F(\emptyset), then F(F({x}))=F(F(\{x\})) = \emptyset.
If we have xSx \in S, then xF()x \in F(\emptyset) or xF()x \notin F(\emptyset).
We also have F()=XSF(\emptyset) = X \subseteq S. The number of possible subsets is 26=642^6 = 64.
Suppose F()=AF(\emptyset) = A. Then F(A)=F(A) = \emptyset. So, F(F())=F(A)=F(F(\emptyset)) = F(A) = \emptyset.
Let xAx \in A. Then F(F({x}))={x}F(F(\{x\})) = \{x\}. Let xAx \notin A. Then F(F({x}))=F(F(\{x\})) = \emptyset.
This seems to be linked to whether xx is in F()F(\emptyset).
Let S={1}S=\{1\}. If A=A = \emptyset, B=B = \emptyset, then F(F())=F()F(F(\emptyset) \cup \emptyset) = \emptyset \cap F(\emptyset), so F(F())=F(F(\emptyset)) = \emptyset.
If A=A = \emptyset, B={1}B = \{1\}, then F(F(){1})=F({1})F(F(\emptyset) \cup \{1\}) = \emptyset \cap F(\{1\}), so F(F(){1})=F(F(\emptyset) \cup \{1\}) = \emptyset.
If A={1}A = \{1\}, B=B = \emptyset, then F(F({1}))={1}F()F(F(\{1\}) \cup \emptyset) = \{1\} \cap F(\emptyset), so F(F({1}))={1}F()F(F(\{1\})) = \{1\} \cap F(\emptyset).
If A={1}A = \{1\}, B={1}B = \{1\}, then F(F({1}){1})={1}F({1})F(F(\{1\}) \cup \{1\}) = \{1\} \cap F(\{1\}).
There are 26=642^6=64 choices for F()F(\emptyset). For each ASA \subseteq S, we must have F(A)F(A).
Consider the case S={1}S = \{1\}. FF maps subsets of SS to subsets of SS.
Subsets of SS are \emptyset and {1}\{1\}.
So, we need to find how many functions satisfy F(F(A)B)=AF(B)F(F(A) \cup B) = A \cap F(B) for all A,BSA, B \subseteq S.
We have the following cases for FF:
F()=F(\emptyset) = \emptyset, F({1})=F(\{1\}) = \emptyset.
F()=F(\emptyset) = \emptyset, F({1})={1}F(\{1\}) = \{1\}.
F()={1}F(\emptyset) = \{1\}, F({1})=F(\{1\}) = \emptyset.
F()={1}F(\emptyset) = \{1\}, F({1})={1}F(\{1\}) = \{1\}.

3. Final Answer

64

Related problems in "Discrete Mathematics"

The problem asks for the output of the given flowchart. The flowchart initializes $N=0$ and $Result=...

AlgorithmsFlowchartsIterationSequences
2025/4/8

The problem is to determine the output of the given pseudocode. The pseudocode initializes two varia...

AlgorithmsLoopsPseudocodeFactorial
2025/4/8

Question 14: We are given a single-input NAND gate and a truth table where the output $Q$ is represe...

Boolean AlgebraLogic GatesTruth TablesDeMorgan's Law
2025/4/8

The image presents three problems. Problem 11 asks for the binary equivalent of the hexadecimal numb...

Number SystemsBinaryHexadecimalASCIILogic GatesBoolean Algebra
2025/4/8

The problem provides a logic circuit diagram composed of logic gates with inputs A and B, and output...

Boolean AlgebraLogic GatesTruth TablesDigital CircuitsDeMorgan's Law
2025/4/8

The problem presents a Venn diagram showing the number of learners who like Fanta, Coke, and Sprite....

Venn DiagramsSet TheoryCounting
2025/4/4

The problem presents a Venn diagram showing the number of learners who liked Fanta, Coke, and Sprite...

Set TheoryVenn DiagramsProblem Solving
2025/4/4

The problem provides a Venn diagram showing the number of learners who liked Fanta, Coke, and Sprite...

Venn DiagramsSet TheoryProblem SolvingAlgebra
2025/4/4

The question asks to identify the logical operator that evaluates to TRUE only when both conditions ...

LogicBoolean AlgebraLogical OperatorsAND operator
2025/4/4

The problem requires us to place the numbers 40, 8, and 15 in the Venn diagram. The left circle repr...

Set TheoryVenn DiagramsNumber TheoryDivisibility
2025/4/4