Given that $a^2 = 9 + 4\sqrt{5}$, we need to: (a) Show that $a = \sqrt{5} + 2$. (b) Find the value of $a^4 - \frac{1}{a^4}$. (c) Show that $a^5 + \frac{1}{a^5} = 610\sqrt{5}$.

AlgebraAlgebraic ManipulationRadicalsExponentsBinomial TheoremSimplification
2025/4/29

1. Problem Description

Given that a2=9+45a^2 = 9 + 4\sqrt{5}, we need to:
(a) Show that a=5+2a = \sqrt{5} + 2.
(b) Find the value of a41a4a^4 - \frac{1}{a^4}.
(c) Show that a5+1a5=6105a^5 + \frac{1}{a^5} = 610\sqrt{5}.

2. Solution Steps

(a) To show that a=5+2a = \sqrt{5} + 2, we start with a2=9+45a^2 = 9 + 4\sqrt{5}. We can rewrite the right-hand side as a perfect square.
a2=9+45=4+5+45=22+(5)2+225=(2+5)2a^2 = 9 + 4\sqrt{5} = 4 + 5 + 4\sqrt{5} = 2^2 + (\sqrt{5})^2 + 2 \cdot 2 \cdot \sqrt{5} = (2 + \sqrt{5})^2
Taking the square root of both sides, we get:
a=(2+5)2=2+5=5+2a = \sqrt{(2 + \sqrt{5})^2} = 2 + \sqrt{5} = \sqrt{5} + 2 (since a>0a>0)
(b) To find the value of a41a4a^4 - \frac{1}{a^4}, we first need to find a4a^4 and 1a4\frac{1}{a^4}.
Since a=5+2a = \sqrt{5} + 2, we have 1a=15+2=52(5+2)(52)=5254=52\frac{1}{a} = \frac{1}{\sqrt{5} + 2} = \frac{\sqrt{5} - 2}{(\sqrt{5} + 2)(\sqrt{5} - 2)} = \frac{\sqrt{5} - 2}{5 - 4} = \sqrt{5} - 2.
Now, we find a2=(5+2)2=5+45+4=9+45a^2 = (\sqrt{5} + 2)^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5}.
Also, 1a2=(1a)2=(52)2=545+4=945\frac{1}{a^2} = (\frac{1}{a})^2 = (\sqrt{5} - 2)^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5}.
Next, a4=(a2)2=(9+45)2=81+725+165=81+725+80=161+725a^4 = (a^2)^2 = (9 + 4\sqrt{5})^2 = 81 + 72\sqrt{5} + 16 \cdot 5 = 81 + 72\sqrt{5} + 80 = 161 + 72\sqrt{5}.
And 1a4=(1a2)2=(945)2=81725+165=81725+80=161725\frac{1}{a^4} = (\frac{1}{a^2})^2 = (9 - 4\sqrt{5})^2 = 81 - 72\sqrt{5} + 16 \cdot 5 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5}.
Therefore, a41a4=(161+725)(161725)=161+725161+725=1445a^4 - \frac{1}{a^4} = (161 + 72\sqrt{5}) - (161 - 72\sqrt{5}) = 161 + 72\sqrt{5} - 161 + 72\sqrt{5} = 144\sqrt{5}.
(c) To show that a5+1a5=6105a^5 + \frac{1}{a^5} = 610\sqrt{5}, we can use the following identities:
a2+1a2=9+45+945=18a^2 + \frac{1}{a^2} = 9 + 4\sqrt{5} + 9 - 4\sqrt{5} = 18
a+1a=5+2+52=25a + \frac{1}{a} = \sqrt{5} + 2 + \sqrt{5} - 2 = 2\sqrt{5}
We have a3+1a3=(a+1a)33(a+1a)=(25)33(25)=85565=40565=345a^3 + \frac{1}{a^3} = (a + \frac{1}{a})^3 - 3(a + \frac{1}{a}) = (2\sqrt{5})^3 - 3(2\sqrt{5}) = 8 \cdot 5\sqrt{5} - 6\sqrt{5} = 40\sqrt{5} - 6\sqrt{5} = 34\sqrt{5}.
Also, a2+1a2=18a^2 + \frac{1}{a^2} = 18
a5+1a5=(a3+1a3)(a2+1a2)(a+1a)=(345)(18)(25)=612525=6105a^5 + \frac{1}{a^5} = (a^3 + \frac{1}{a^3})(a^2 + \frac{1}{a^2}) - (a + \frac{1}{a}) = (34\sqrt{5})(18) - (2\sqrt{5}) = 612\sqrt{5} - 2\sqrt{5} = 610\sqrt{5}.

3. Final Answer

(a) a=5+2a = \sqrt{5} + 2 is shown.
(b) a41a4=1445a^4 - \frac{1}{a^4} = 144\sqrt{5}
(c) a5+1a5=6105a^5 + \frac{1}{a^5} = 610\sqrt{5} is shown.

Related problems in "Algebra"

We are given three sub-problems. a) Express $(\frac{13}{15} - \frac{7}{10})$ as a percentage. b) Fac...

FractionsPercentageFactorizationRatioLinear Equations
2025/4/29

The problem states that the mean of the numbers 2, 5, 2x, and 7 is less than or equal to 5. We need ...

InequalitiesMeanSolving Inequalities
2025/4/29

The problem asks us to find the value of $k$ such that $x^2 + kx + \frac{16}{9}$ is a perfect square...

Quadratic EquationsPerfect Square TrinomialsCompleting the Square
2025/4/29

The problem states that the sum of the roots of the equation $(x - p)(2x + 1) = 0$ is 1. We need to ...

Quadratic EquationsRoots of EquationsSolving Equations
2025/4/29

The problem provides a table of $x$ and $y$ values that satisfy the linear relation $y = mx + c$. We...

Linear EquationsSlope-Intercept FormSolving Equations
2025/4/29

The problem provides a table of $x$ and $y$ values that satisfy a linear equation of the form $y = m...

Linear EquationsSlope-intercept formCoordinate Geometry
2025/4/29

The problem states that the mean age of $R$ men in a club is 50 years. Two men, aged 55 and 63, leav...

Word ProblemAveragesEquationsMeanAge Problem
2025/4/29

The problem asks to find the inequality whose solution is represented by the shaded region in the gi...

Linear InequalitiesGraphing InequalitiesCoordinate Geometry
2025/4/29

The problem asks to find the formula for the $n$th term of the sequence $-2, 4, -8, 16, \dots$. The ...

SequencesSeriesExponents
2025/4/29

We are given the equation $y = \frac{2(\sqrt{x^2}+m)}{3N}$ and we want to express $x$ in terms of $y...

Equation SolvingSquare RootsVariables
2025/4/29