(a) To show that a = 5 + 2 a = \sqrt{5} + 2 a = 5 + 2 , we start with a 2 = 9 + 4 5 a^2 = 9 + 4\sqrt{5} a 2 = 9 + 4 5 . We can rewrite the right-hand side as a perfect square.
a 2 = 9 + 4 5 = 4 + 5 + 4 5 = 2 2 + ( 5 ) 2 + 2 ⋅ 2 ⋅ 5 = ( 2 + 5 ) 2 a^2 = 9 + 4\sqrt{5} = 4 + 5 + 4\sqrt{5} = 2^2 + (\sqrt{5})^2 + 2 \cdot 2 \cdot \sqrt{5} = (2 + \sqrt{5})^2 a 2 = 9 + 4 5 = 4 + 5 + 4 5 = 2 2 + ( 5 ) 2 + 2 ⋅ 2 ⋅ 5 = ( 2 + 5 ) 2
Taking the square root of both sides, we get:
a = ( 2 + 5 ) 2 = 2 + 5 = 5 + 2 a = \sqrt{(2 + \sqrt{5})^2} = 2 + \sqrt{5} = \sqrt{5} + 2 a = ( 2 + 5 ) 2 = 2 + 5 = 5 + 2 (since a > 0 a>0 a > 0 )
(b) To find the value of a 4 − 1 a 4 a^4 - \frac{1}{a^4} a 4 − a 4 1 , we first need to find a 4 a^4 a 4 and 1 a 4 \frac{1}{a^4} a 4 1 .
Since a = 5 + 2 a = \sqrt{5} + 2 a = 5 + 2 , we have 1 a = 1 5 + 2 = 5 − 2 ( 5 + 2 ) ( 5 − 2 ) = 5 − 2 5 − 4 = 5 − 2 \frac{1}{a} = \frac{1}{\sqrt{5} + 2} = \frac{\sqrt{5} - 2}{(\sqrt{5} + 2)(\sqrt{5} - 2)} = \frac{\sqrt{5} - 2}{5 - 4} = \sqrt{5} - 2 a 1 = 5 + 2 1 = ( 5 + 2 ) ( 5 − 2 ) 5 − 2 = 5 − 4 5 − 2 = 5 − 2 .
Now, we find a 2 = ( 5 + 2 ) 2 = 5 + 4 5 + 4 = 9 + 4 5 a^2 = (\sqrt{5} + 2)^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5} a 2 = ( 5 + 2 ) 2 = 5 + 4 5 + 4 = 9 + 4 5 . Also, 1 a 2 = ( 1 a ) 2 = ( 5 − 2 ) 2 = 5 − 4 5 + 4 = 9 − 4 5 \frac{1}{a^2} = (\frac{1}{a})^2 = (\sqrt{5} - 2)^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5} a 2 1 = ( a 1 ) 2 = ( 5 − 2 ) 2 = 5 − 4 5 + 4 = 9 − 4 5 .
Next, a 4 = ( a 2 ) 2 = ( 9 + 4 5 ) 2 = 81 + 72 5 + 16 ⋅ 5 = 81 + 72 5 + 80 = 161 + 72 5 a^4 = (a^2)^2 = (9 + 4\sqrt{5})^2 = 81 + 72\sqrt{5} + 16 \cdot 5 = 81 + 72\sqrt{5} + 80 = 161 + 72\sqrt{5} a 4 = ( a 2 ) 2 = ( 9 + 4 5 ) 2 = 81 + 72 5 + 16 ⋅ 5 = 81 + 72 5 + 80 = 161 + 72 5 . And 1 a 4 = ( 1 a 2 ) 2 = ( 9 − 4 5 ) 2 = 81 − 72 5 + 16 ⋅ 5 = 81 − 72 5 + 80 = 161 − 72 5 \frac{1}{a^4} = (\frac{1}{a^2})^2 = (9 - 4\sqrt{5})^2 = 81 - 72\sqrt{5} + 16 \cdot 5 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5} a 4 1 = ( a 2 1 ) 2 = ( 9 − 4 5 ) 2 = 81 − 72 5 + 16 ⋅ 5 = 81 − 72 5 + 80 = 161 − 72 5 .
Therefore, a 4 − 1 a 4 = ( 161 + 72 5 ) − ( 161 − 72 5 ) = 161 + 72 5 − 161 + 72 5 = 144 5 a^4 - \frac{1}{a^4} = (161 + 72\sqrt{5}) - (161 - 72\sqrt{5}) = 161 + 72\sqrt{5} - 161 + 72\sqrt{5} = 144\sqrt{5} a 4 − a 4 1 = ( 161 + 72 5 ) − ( 161 − 72 5 ) = 161 + 72 5 − 161 + 72 5 = 144 5 .
(c) To show that a 5 + 1 a 5 = 610 5 a^5 + \frac{1}{a^5} = 610\sqrt{5} a 5 + a 5 1 = 610 5 , we can use the following identities:
a 2 + 1 a 2 = 9 + 4 5 + 9 − 4 5 = 18 a^2 + \frac{1}{a^2} = 9 + 4\sqrt{5} + 9 - 4\sqrt{5} = 18 a 2 + a 2 1 = 9 + 4 5 + 9 − 4 5 = 18 a + 1 a = 5 + 2 + 5 − 2 = 2 5 a + \frac{1}{a} = \sqrt{5} + 2 + \sqrt{5} - 2 = 2\sqrt{5} a + a 1 = 5 + 2 + 5 − 2 = 2 5
We have a 3 + 1 a 3 = ( a + 1 a ) 3 − 3 ( a + 1 a ) = ( 2 5 ) 3 − 3 ( 2 5 ) = 8 ⋅ 5 5 − 6 5 = 40 5 − 6 5 = 34 5 a^3 + \frac{1}{a^3} = (a + \frac{1}{a})^3 - 3(a + \frac{1}{a}) = (2\sqrt{5})^3 - 3(2\sqrt{5}) = 8 \cdot 5\sqrt{5} - 6\sqrt{5} = 40\sqrt{5} - 6\sqrt{5} = 34\sqrt{5} a 3 + a 3 1 = ( a + a 1 ) 3 − 3 ( a + a 1 ) = ( 2 5 ) 3 − 3 ( 2 5 ) = 8 ⋅ 5 5 − 6 5 = 40 5 − 6 5 = 34 5 . Also, a 2 + 1 a 2 = 18 a^2 + \frac{1}{a^2} = 18 a 2 + a 2 1 = 18
a 5 + 1 a 5 = ( a 3 + 1 a 3 ) ( a 2 + 1 a 2 ) − ( a + 1 a ) = ( 34 5 ) ( 18 ) − ( 2 5 ) = 612 5 − 2 5 = 610 5 a^5 + \frac{1}{a^5} = (a^3 + \frac{1}{a^3})(a^2 + \frac{1}{a^2}) - (a + \frac{1}{a}) = (34\sqrt{5})(18) - (2\sqrt{5}) = 612\sqrt{5} - 2\sqrt{5} = 610\sqrt{5} a 5 + a 5 1 = ( a 3 + a 3 1 ) ( a 2 + a 2 1 ) − ( a + a 1 ) = ( 34 5 ) ( 18 ) − ( 2 5 ) = 612 5 − 2 5 = 610 5 .