First, factor the denominators of both fractions.
x2+x−56=(x+8)(x−7) x2−49=(x+7)(x−7) So the expression becomes:
(x+8)(x−7)x+7−(x+7)(x−7)x+8 The least common denominator is (x+8)(x−7)(x+7). We rewrite each fraction with the common denominator:
(x+8)(x−7)(x+7)(x+7)(x+7)−(x+7)(x−7)(x+8)(x+8)(x+8) Now, subtract the numerators:
(x+8)(x−7)(x+7)(x+7)(x+7)−(x+8)(x+8) Expanding the numerators gives:
(x+8)(x−7)(x+7)x2+14x+49−(x2+16x+64) (x+8)(x−7)(x+7)x2+14x+49−x2−16x−64 Simplify the numerator:
(x+8)(x−7)(x+7)−2x−15