The problem consists of three parts: a. Given a quadratic equation $2x^2 - 4x + 5 = 0$ with roots $\alpha$ and $\beta$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$. b. Express the complex numbers $\frac{1+i}{1-2i}$ and $\frac{2+3i}{5+i}$ in the form $a+ib$, where $a$ and $b$ are real numbers. c. Given two matrices $A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 1 & -2 \\ -4 & 5 & 2 \end{pmatrix}$, find $A-B$ and $B^T B$.

AlgebraQuadratic EquationsComplex NumbersMatricesMatrix OperationsSum and Product of Roots
2025/5/3

1. Problem Description

The problem consists of three parts:
a. Given a quadratic equation 2x24x+5=02x^2 - 4x + 5 = 0 with roots α\alpha and β\beta, find the value of 1α+1β\frac{1}{\alpha} + \frac{1}{\beta}.
b. Express the complex numbers 1+i12i\frac{1+i}{1-2i} and 2+3i5+i\frac{2+3i}{5+i} in the form a+iba+ib, where aa and bb are real numbers.
c. Given two matrices A=(121402)A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & 2 \end{pmatrix} and B=(312452)B = \begin{pmatrix} 3 & 1 & -2 \\ -4 & 5 & 2 \end{pmatrix}, find ABA-B and BTBB^T B.

2. Solution Steps

a.
We are given the quadratic equation 2x24x+5=02x^2 - 4x + 5 = 0 with roots α\alpha and β\beta. We want to find the value of 1α+1β\frac{1}{\alpha} + \frac{1}{\beta}.
We can rewrite 1α+1β\frac{1}{\alpha} + \frac{1}{\beta} as α+βαβ\frac{\alpha + \beta}{\alpha \beta}.
From the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, the sum of the roots is given by ba-\frac{b}{a} and the product of the roots is given by ca\frac{c}{a}.
In our case, a=2a=2, b=4b=-4, and c=5c=5.
Therefore, α+β=42=2\alpha + \beta = -\frac{-4}{2} = 2 and αβ=52\alpha \beta = \frac{5}{2}.
So, 1α+1β=α+βαβ=252=225=45\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{2}{\frac{5}{2}} = \frac{2 \cdot 2}{5} = \frac{4}{5}.
b.
i. We want to express 1+i12i\frac{1+i}{1-2i} in the form a+iba+ib.
Multiply the numerator and denominator by the conjugate of the denominator:
1+i12i=(1+i)(1+2i)(12i)(1+2i)=1+2i+i+2i21(2i)2=1+3i21(4)=1+3i5=15+35i\frac{1+i}{1-2i} = \frac{(1+i)(1+2i)}{(1-2i)(1+2i)} = \frac{1 + 2i + i + 2i^2}{1 - (2i)^2} = \frac{1 + 3i - 2}{1 - (-4)} = \frac{-1 + 3i}{5} = -\frac{1}{5} + \frac{3}{5}i.
ii. We want to express 2+3i5+i\frac{2+3i}{5+i} in the form a+iba+ib.
Multiply the numerator and denominator by the conjugate of the denominator:
2+3i5+i=(2+3i)(5i)(5+i)(5i)=102i+15i3i225i2=10+13i+325+1=13+13i26=1326+1326i=12+12i\frac{2+3i}{5+i} = \frac{(2+3i)(5-i)}{(5+i)(5-i)} = \frac{10 - 2i + 15i - 3i^2}{25 - i^2} = \frac{10 + 13i + 3}{25 + 1} = \frac{13 + 13i}{26} = \frac{13}{26} + \frac{13}{26}i = \frac{1}{2} + \frac{1}{2}i.
c.
i. We want to find ABA - B, where A=(121402)A = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 0 & 2 \end{pmatrix} and B=(312452)B = \begin{pmatrix} 3 & 1 & -2 \\ -4 & 5 & 2 \end{pmatrix}.
AB=(13211(2)4(4)0522)=(213850)A - B = \begin{pmatrix} 1-3 & 2-1 & 1-(-2) \\ 4-(-4) & 0-5 & 2-2 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ 8 & -5 & 0 \end{pmatrix}.
ii. We want to find BTBB^T B.
First, find BTB^T, the transpose of BB:
BT=(341522)B^T = \begin{pmatrix} 3 & -4 \\ 1 & 5 \\ -2 & 2 \end{pmatrix}.
Now, compute BTBB^T B:
BTB=(341522)(312452)=(3(3)+(4)(4)3(1)+(4)(5)3(2)+(4)(2)1(3)+5(4)1(1)+5(5)1(2)+5(2)2(3)+2(4)2(1)+2(5)2(2)+2(2))=(9+16320683201+252+10682+104+4)=(251714172681488)B^T B = \begin{pmatrix} 3 & -4 \\ 1 & 5 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & -2 \\ -4 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 3(3) + (-4)(-4) & 3(1) + (-4)(5) & 3(-2) + (-4)(2) \\ 1(3) + 5(-4) & 1(1) + 5(5) & 1(-2) + 5(2) \\ -2(3) + 2(-4) & -2(1) + 2(5) & -2(-2) + 2(2) \end{pmatrix} = \begin{pmatrix} 9 + 16 & 3 - 20 & -6 - 8 \\ 3 - 20 & 1 + 25 & -2 + 10 \\ -6 - 8 & -2 + 10 & 4 + 4 \end{pmatrix} = \begin{pmatrix} 25 & -17 & -14 \\ -17 & 26 & 8 \\ -14 & 8 & 8 \end{pmatrix}.

3. Final Answer

a. 45\frac{4}{5}
b. i. 15+35i-\frac{1}{5} + \frac{3}{5}i
ii. 12+12i\frac{1}{2} + \frac{1}{2}i
c. i. (213850)\begin{pmatrix} -2 & 1 & 3 \\ 8 & -5 & 0 \end{pmatrix}
ii. (251714172681488)\begin{pmatrix} 25 & -17 & -14 \\ -17 & 26 & 8 \\ -14 & 8 & 8 \end{pmatrix}

Related problems in "Algebra"

Solve the system of equations: $x^2 + y^2 = 5$ $y = 3x - 5$

Systems of EquationsQuadratic EquationsSubstitutionSolving Equations
2025/5/4

We are given the following system of equations: $x^2 + y^2 = 29$ $3x^2 + 25y^2 = 100$ We need to sol...

Systems of EquationsSolving EquationsSquare RootsVariables
2025/5/4

We are given a system of two equations with two variables, $x$ and $y$: $x - y = -1$ $-1 = x^2 + 1$ ...

Systems of EquationsComplex NumbersQuadratic EquationsVariables
2025/5/4

We are given two equations: $x - y = -1$ $-1 = x^3 + 1$ We need to solve for $x$ and $y$.

Systems of EquationsCubic EquationsSolving EquationsCube Root
2025/5/4

Solve the following system of equations: $x^2 + y^2 = 41$ $x^2 - y = 41$

Systems of EquationsSubstitutionQuadratic EquationsSolution Sets
2025/5/4

We are given a system of two equations: $x^2 + y^2 = 5$ $y = 3x - 5$ We need to find the solutions $...

System of EquationsSubstitution MethodQuadratic EquationsSolving Equations
2025/5/4

We are given a system of two equations: $x^2 + y^2 = 10$ $x^2 - y^2 = 10$ We need to find the values...

Systems of EquationsElimination MethodVariablesSolutions
2025/5/4

The problem is to solve the equation $4x^2 - 3^2 = 10$ for $x$.

Quadratic EquationsSolving EquationsExponentsSquare Roots
2025/5/3

Find the intersection points of the graphs of the equations $y = 2x^2 + 3x - 2$ and $y = 2x - 1$.

Quadratic EquationsSystems of EquationsIntersection of CurvesCoordinate Geometry
2025/5/3

Suzi builds L shapes with blocks. An L shape that is 3 blocks high uses 7 blocks. We need to find ho...

Linear EquationsSequencesPattern RecognitionProblem Solving
2025/5/3