The problem consists of three separate geometry questions. Question 1: Given two parallel lines $(\Delta)$ and $(\Delta')$, a point $M$, $M_1 = S_{(\Delta)}(M)$ and $M' = S_{(\Delta')}(M_1)$, where $S$ denotes reflection across a line. Let $A$ be the orthogonal projection of $M$ onto $(\Delta)$, and $B$ be the orthogonal projection of $M_1$ onto $(\Delta')$. (a) Express the vector $\vec{MM'}$ in terms of $\vec{AB}$. (b) Deduce that $M' = t_{2\vec{AB}}(M)$, where $t$ denotes translation. Also deduce that $S_{(\Delta')} \circ S_{(\Delta)} = t_{2\vec{AB}}$. Question 2: Given two distinct points $I$ and $J$, a point $N$, $N_1 = S_I(N)$ and $N' = S_J(N_1)$, where $S$ denotes reflection across a point. (a) Express the vector $\vec{NN'}$ in terms of $\vec{IJ}$. (b) Deduce that $N' = t_{2\vec{IJ}}(N)$. Also deduce that $S_J \circ S_I = t_{2\vec{IJ}}$. Question 3: Given two non-null vectors $\vec{u}$ and $\vec{v}$, a point $T$, $T_1 = t_{\vec{v}}(T)$ and $T' = t_{\vec{u}}(T_1)$, where $t$ denotes translation by a vector. (a) Express the vector $\vec{TT'}$ in terms of $\vec{u}$ and $\vec{v}$. (b) Deduce that $T' = t_{\vec{u}+\vec{v}}(T)$. Also deduce that $t_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}$.

GeometryTransformationsVectorsReflectionsTranslationsGeometric Proofs
2025/3/18

1. Problem Description

The problem consists of three separate geometry questions.
Question 1: Given two parallel lines (Δ)(\Delta) and (Δ)(\Delta'), a point MM, M1=S(Δ)(M)M_1 = S_{(\Delta)}(M) and M=S(Δ)(M1)M' = S_{(\Delta')}(M_1), where SS denotes reflection across a line. Let AA be the orthogonal projection of MM onto (Δ)(\Delta), and BB be the orthogonal projection of M1M_1 onto (Δ)(\Delta').
(a) Express the vector MM\vec{MM'} in terms of AB\vec{AB}.
(b) Deduce that M=t2AB(M)M' = t_{2\vec{AB}}(M), where tt denotes translation. Also deduce that S(Δ)S(Δ)=t2ABS_{(\Delta')} \circ S_{(\Delta)} = t_{2\vec{AB}}.
Question 2: Given two distinct points II and JJ, a point NN, N1=SI(N)N_1 = S_I(N) and N=SJ(N1)N' = S_J(N_1), where SS denotes reflection across a point.
(a) Express the vector NN\vec{NN'} in terms of IJ\vec{IJ}.
(b) Deduce that N=t2IJ(N)N' = t_{2\vec{IJ}}(N). Also deduce that SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}.
Question 3: Given two non-null vectors u\vec{u} and v\vec{v}, a point TT, T1=tv(T)T_1 = t_{\vec{v}}(T) and T=tu(T1)T' = t_{\vec{u}}(T_1), where tt denotes translation by a vector.
(a) Express the vector TT\vec{TT'} in terms of u\vec{u} and v\vec{v}.
(b) Deduce that T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T). Also deduce that tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}.

2. Solution Steps

Question 1:
(a)
MM1=2MA\vec{MM_1} = 2\vec{MA}
M1M=2M1B\vec{M_1M'} = 2\vec{M_1B}
MM=MM1+M1M=2MA+2M1B\vec{MM'} = \vec{MM_1} + \vec{M_1M'} = 2\vec{MA} + 2\vec{M_1B}
Since Δ\Delta and Δ\Delta' are parallel, AB=AM1\vec{AB} = \vec{AM_1}. Therefore AM1=AB\vec{AM_1} = \vec{AB}.
MM=2(MA+M1B)=2(MA+AM1+M1BAM1)=2(MM1+M1BAM1)=2(MBAM1)\vec{MM'} = 2(\vec{MA} + \vec{M_1B}) = 2(\vec{MA} + \vec{AM_1} + \vec{M_1B} - \vec{AM_1}) = 2(\vec{MM_1} + \vec{M_1B} - \vec{AM_1})= 2(\vec{MB} - \vec{AM_1}).
Since MABM1 is a trapezoid, and A and B are projections of M and M

1. So the distance between the two lines is the same. Also MABM1 is rectangle.

So, MA=M1BMA = M1B. Then MM=2AB\vec{MM'} = 2\vec{AB}
(b)
Since MM=2AB\vec{MM'} = 2\vec{AB}, then M=t2AB(M)M' = t_{2\vec{AB}}(M).
S(Δ)S(Δ)(M)=S(Δ)(M1)=MS_{(\Delta')} \circ S_{(\Delta)}(M) = S_{(\Delta')}(M_1) = M'
Since M=t2AB(M)M' = t_{2\vec{AB}}(M), then S(Δ)S(Δ)=t2ABS_{(\Delta')} \circ S_{(\Delta)} = t_{2\vec{AB}}.
Question 2:
(a)
NN1=2NI\vec{NN_1} = 2\vec{NI}
N1N=2N1J\vec{N_1N'} = 2\vec{N_1J}
NN=NN1+N1N=2NI+2N1J=2NI+2(N1I+IJ)=2(NI+N1I)+2IJ=2(NIIN1)+2IJ\vec{NN'} = \vec{NN_1} + \vec{N_1N'} = 2\vec{NI} + 2\vec{N_1J} = 2\vec{NI} + 2(\vec{N_1I} + \vec{IJ}) = 2(\vec{NI} + \vec{N_1I}) + 2\vec{IJ} = 2(\vec{NI} - \vec{IN_1}) + 2\vec{IJ}. Since N1 is the symmetric of N across I, then IN=IN1\vec{IN} = - \vec{IN_1}, meaning that NI=N1I\vec{NI} = \vec{N_1I}.
Therefore NN=2IJ\vec{NN'} = 2\vec{IJ}.
(b)
Since NN=2IJ\vec{NN'} = 2\vec{IJ}, then N=t2IJ(N)N' = t_{2\vec{IJ}}(N).
SJSI(N)=SJ(N1)=NS_J \circ S_I(N) = S_J(N_1) = N'
Since N=t2IJ(N)N' = t_{2\vec{IJ}}(N), then SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}.
Question 3:
(a)
TT1=v\vec{TT_1} = \vec{v}
T1T=u\vec{T_1T'} = \vec{u}
TT=TT1+T1T=v+u=u+v\vec{TT'} = \vec{TT_1} + \vec{T_1T'} = \vec{v} + \vec{u} = \vec{u} + \vec{v}
(b)
Since TT=u+v\vec{TT'} = \vec{u} + \vec{v}, then T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T).
tutv(T)=tu(T1)=Tt_{\vec{u}} \circ t_{\vec{v}}(T) = t_{\vec{u}}(T_1) = T'
Since T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T), then tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}.

3. Final Answer

1)
(a) MM=2AB\vec{MM'} = 2\vec{AB}
(b) M=t2AB(M)M' = t_{2\vec{AB}}(M), S(Δ)S(Δ)=t2ABS_{(\Delta')} \circ S_{(\Delta)} = t_{2\vec{AB}}
2)
(a) NN=2IJ\vec{NN'} = 2\vec{IJ}
(b) N=t2IJ(N)N' = t_{2\vec{IJ}}(N), SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}
3)
(a) TT=u+v\vec{TT'} = \vec{u} + \vec{v}
(b) T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T), tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}

Related problems in "Geometry"

The problem states that the area of triangle OFC is $33 \text{ cm}^2$. We need to find the area of t...

AreaTrianglesSimilar TrianglesRatio and Proportion
2025/6/6

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3