The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.
2025/5/6
1. Problem Description
The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.
2. Solution Steps
7. If $f(x) = \begin{cases} x^2 & \text{when } x < 0 \\ x & \text{when } 0 \leq x \leq 1 \\ \frac{1}{x} & \text{when } x > 1 \end{cases}$, find (i) $f(\frac{1}{2})$, (ii) $f(-2)$, (iii) $f(\sqrt{3})$, and (iv) $f(-\sqrt{3})$.
(i) Since , .
(ii) Since , .
(iii) Since , .
(iv) Since , .
8. If $f(x) = x^3 - \frac{1}{x^3}$, show that $f(x) + f(\frac{1}{x}) = 0$.
.
Then .
9. If $f(x) = \frac{2x}{1+x^2}$, show that $f(\tan \theta) = \sin 2\theta$.
.
Using the identity , we get .
1
0. If $f(x) = \frac{1-x}{1+x}$, then show that (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$.
(i) .
(ii) .
1
1. If for non-zero $x$, $a f(x) + b f(\frac{1}{x}) = \frac{5}{x} - 5$, where $a \neq b$, then find $f(x)$.
Let the given equation be
...(1)
Replacing with , we get
...(2)
Multiplying equation (1) by , and equation (2) by , we have
Subtracting the two equations, we get
1
2. If $f(x) = \frac{9}{5}x+32$, find $f(-10)$.
.
1
3. If $f(x) = x^3$, find the value of $\frac{f(5)-f(1)}{5-1}$.
.
.
.
3. Final Answer
7. (i) $f(\frac{1}{2}) = \frac{1}{2}$ (ii) $f(-2) = 4$ (iii) $f(\sqrt{3}) = \frac{\sqrt{3}}{3}$ (iv) $f(-\sqrt{3}) = 3$
8. $f(x) + f(\frac{1}{x}) = 0$
9. $f(\tan \theta) = \sin 2\theta$
1
0. (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$
1
1. $f(x) = \frac{5(a - ax - bx^2 + bx)}{x(a^2 - b^2)}$
1
2. $f(-10) = 14$
1