The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.

AlgebraFunctionsFunction EvaluationFunction PropertiesTrigonometric Identities
2025/5/6

1. Problem Description

The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.

2. Solution Steps

7. If $f(x) = \begin{cases} x^2 & \text{when } x < 0 \\ x & \text{when } 0 \leq x \leq 1 \\ \frac{1}{x} & \text{when } x > 1 \end{cases}$, find (i) $f(\frac{1}{2})$, (ii) $f(-2)$, (iii) $f(\sqrt{3})$, and (iv) $f(-\sqrt{3})$.

(i) Since 01210 \leq \frac{1}{2} \leq 1, f(12)=12f(\frac{1}{2}) = \frac{1}{2}.
(ii) Since 2<0-2 < 0, f(2)=(2)2=4f(-2) = (-2)^2 = 4.
(iii) Since 3>1\sqrt{3} > 1, f(3)=13=33f(\sqrt{3}) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.
(iv) Since 3<0-\sqrt{3} < 0, f(3)=(3)2=3f(-\sqrt{3}) = (-\sqrt{3})^2 = 3.

8. If $f(x) = x^3 - \frac{1}{x^3}$, show that $f(x) + f(\frac{1}{x}) = 0$.

f(1x)=(1x)31(1x)3=1x3x3f(\frac{1}{x}) = (\frac{1}{x})^3 - \frac{1}{(\frac{1}{x})^3} = \frac{1}{x^3} - x^3.
Then f(x)+f(1x)=x31x3+1x3x3=0f(x) + f(\frac{1}{x}) = x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3 = 0.

9. If $f(x) = \frac{2x}{1+x^2}$, show that $f(\tan \theta) = \sin 2\theta$.

f(tanθ)=2tanθ1+(tanθ)2=2tanθ1+tan2θf(\tan \theta) = \frac{2\tan \theta}{1+(\tan \theta)^2} = \frac{2\tan \theta}{1+\tan^2 \theta}.
Using the identity sin2θ=2tanθ1+tan2θ\sin 2\theta = \frac{2\tan \theta}{1+\tan^2 \theta}, we get f(tanθ)=sin2θf(\tan \theta) = \sin 2\theta.
1

0. If $f(x) = \frac{1-x}{1+x}$, then show that (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$.

(i) f(1x)=11x1+1x=x1xx+1x=x1x+1=1x1+x=f(x)f(\frac{1}{x}) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{\frac{x-1}{x}}{\frac{x+1}{x}} = \frac{x-1}{x+1} = -\frac{1-x}{1+x} = -f(x).
(ii) f(1x)=1(1x)1+(1x)=1+1x11x=x+1xx1x=x+1x1=1x1x+1=1f(x)f(-\frac{1}{x}) = \frac{1-(-\frac{1}{x})}{1+(-\frac{1}{x})} = \frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{\frac{x+1}{x}}{\frac{x-1}{x}} = \frac{x+1}{x-1} = \frac{1}{\frac{x-1}{x+1}} = \frac{1}{f(x)}.
1

1. If for non-zero $x$, $a f(x) + b f(\frac{1}{x}) = \frac{5}{x} - 5$, where $a \neq b$, then find $f(x)$.

Let the given equation be
af(x)+bf(1x)=5x5a f(x) + b f(\frac{1}{x}) = \frac{5}{x} - 5 ...(1)
Replacing xx with 1x\frac{1}{x}, we get
af(1x)+bf(x)=5x5a f(\frac{1}{x}) + b f(x) = 5x - 5 ...(2)
Multiplying equation (1) by aa, and equation (2) by bb, we have
a2f(x)+abf(1x)=a(5x5)a^2 f(x) + ab f(\frac{1}{x}) = a(\frac{5}{x} - 5)
b2f(x)+abf(1x)=b(5x5)b^2 f(x) + ab f(\frac{1}{x}) = b(5x - 5)
Subtracting the two equations, we get
(a2b2)f(x)=a(5x5)b(5x5)(a^2 - b^2) f(x) = a(\frac{5}{x} - 5) - b(5x - 5)
(a2b2)f(x)=5ax5a5bx+5b(a^2 - b^2) f(x) = \frac{5a}{x} - 5a - 5bx + 5b
f(x)=5ax5a5bx+5ba2b2f(x) = \frac{\frac{5a}{x} - 5a - 5bx + 5b}{a^2 - b^2}
f(x)=5a5ax5bx2+5bxx(a2b2)f(x) = \frac{5a - 5ax - 5bx^2 + 5bx}{x(a^2 - b^2)}
f(x)=5(aaxbx2+bx)x(a2b2)f(x) = \frac{5(a - ax - bx^2 + bx)}{x(a^2 - b^2)}
1

2. If $f(x) = \frac{9}{5}x+32$, find $f(-10)$.

f(10)=95(10)+32=9(2)+32=18+32=14f(-10) = \frac{9}{5}(-10) + 32 = 9(-2) + 32 = -18 + 32 = 14.
1

3. If $f(x) = x^3$, find the value of $\frac{f(5)-f(1)}{5-1}$.

f(5)=53=125f(5) = 5^3 = 125.
f(1)=13=1f(1) = 1^3 = 1.
f(5)f(1)51=125151=1244=31\frac{f(5)-f(1)}{5-1} = \frac{125-1}{5-1} = \frac{124}{4} = 31.

3. Final Answer

7. (i) $f(\frac{1}{2}) = \frac{1}{2}$ (ii) $f(-2) = 4$ (iii) $f(\sqrt{3}) = \frac{\sqrt{3}}{3}$ (iv) $f(-\sqrt{3}) = 3$

8. $f(x) + f(\frac{1}{x}) = 0$

9. $f(\tan \theta) = \sin 2\theta$

1

0. (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$

1

1. $f(x) = \frac{5(a - ax - bx^2 + bx)}{x(a^2 - b^2)}$

1

2. $f(-10) = 14$

1

3. $\frac{f(5)-f(1)}{5-1} = 31$

Related problems in "Algebra"

Sophat is 51 years old, and Rasmei is 21 years old. In how many years will Sophat be twice the age o...

Age ProblemsLinear EquationsWord Problems
2025/6/17

The problem consists of two parts. Part 1: Solve the equation $5(1 + 4e^{0.1x-1}) = 25$ for $x$. Par...

Exponential EquationsLogarithmic EquationsQuadratic EquationsLogarithm PropertiesEquation Solving
2025/6/17

The problem presents a formula for $a_n$, which is $a_n = a_1 \cdot r^{n-1}$. This is the formula fo...

Sequences and SeriesGeometric SequenceFormula
2025/6/17

The image contains several math problems. I will solve "Example 1" and "Related Problem 1". Example ...

SequencesSeriesSummationArithmetic SeriesFormula Derivation
2025/6/17

The problem consists of two questions. Question 1 asks to evaluate several expressions involving exp...

ExponentsRadicalsAlgebraic ExpressionsEquation Solving
2025/6/17

We need to evaluate the expression: $(\frac{-5\sqrt{2}}{\sqrt{6}})(\frac{-\sqrt{7}}{3\sqrt{22}})$.

SimplificationRadicalsRationalizationFractions
2025/6/17

Simplify the expression $-6\sqrt{\frac{3y^2}{16}}$.

SimplificationRadicalsAbsolute ValueExponents
2025/6/17

The problem is to rationalize the denominator of the expression $\frac{-2}{\sqrt[3]{15}}$.

RadicalsRationalizationExponents
2025/6/17

We are asked to evaluate the expression $(3\sqrt{7} - \sqrt{8})^2$.

ExponentsSimplificationRadicals
2025/6/17

The problem asks us to simplify the expression $3\sqrt[3]{72x^5} - 2\sqrt[3]{18x} - 9\sqrt[3]{512x^3...

RadicalsSimplificationCube RootsVariable Restrictions
2025/6/17