The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.

AlgebraFunctionsFunction EvaluationFunction PropertiesTrigonometric Identities
2025/5/6

1. Problem Description

The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the provided image.

2. Solution Steps

7. If $f(x) = \begin{cases} x^2 & \text{when } x < 0 \\ x & \text{when } 0 \leq x \leq 1 \\ \frac{1}{x} & \text{when } x > 1 \end{cases}$, find (i) $f(\frac{1}{2})$, (ii) $f(-2)$, (iii) $f(\sqrt{3})$, and (iv) $f(-\sqrt{3})$.

(i) Since 01210 \leq \frac{1}{2} \leq 1, f(12)=12f(\frac{1}{2}) = \frac{1}{2}.
(ii) Since 2<0-2 < 0, f(2)=(2)2=4f(-2) = (-2)^2 = 4.
(iii) Since 3>1\sqrt{3} > 1, f(3)=13=33f(\sqrt{3}) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.
(iv) Since 3<0-\sqrt{3} < 0, f(3)=(3)2=3f(-\sqrt{3}) = (-\sqrt{3})^2 = 3.

8. If $f(x) = x^3 - \frac{1}{x^3}$, show that $f(x) + f(\frac{1}{x}) = 0$.

f(1x)=(1x)31(1x)3=1x3x3f(\frac{1}{x}) = (\frac{1}{x})^3 - \frac{1}{(\frac{1}{x})^3} = \frac{1}{x^3} - x^3.
Then f(x)+f(1x)=x31x3+1x3x3=0f(x) + f(\frac{1}{x}) = x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3 = 0.

9. If $f(x) = \frac{2x}{1+x^2}$, show that $f(\tan \theta) = \sin 2\theta$.

f(tanθ)=2tanθ1+(tanθ)2=2tanθ1+tan2θf(\tan \theta) = \frac{2\tan \theta}{1+(\tan \theta)^2} = \frac{2\tan \theta}{1+\tan^2 \theta}.
Using the identity sin2θ=2tanθ1+tan2θ\sin 2\theta = \frac{2\tan \theta}{1+\tan^2 \theta}, we get f(tanθ)=sin2θf(\tan \theta) = \sin 2\theta.
1

0. If $f(x) = \frac{1-x}{1+x}$, then show that (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$.

(i) f(1x)=11x1+1x=x1xx+1x=x1x+1=1x1+x=f(x)f(\frac{1}{x}) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{\frac{x-1}{x}}{\frac{x+1}{x}} = \frac{x-1}{x+1} = -\frac{1-x}{1+x} = -f(x).
(ii) f(1x)=1(1x)1+(1x)=1+1x11x=x+1xx1x=x+1x1=1x1x+1=1f(x)f(-\frac{1}{x}) = \frac{1-(-\frac{1}{x})}{1+(-\frac{1}{x})} = \frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{\frac{x+1}{x}}{\frac{x-1}{x}} = \frac{x+1}{x-1} = \frac{1}{\frac{x-1}{x+1}} = \frac{1}{f(x)}.
1

1. If for non-zero $x$, $a f(x) + b f(\frac{1}{x}) = \frac{5}{x} - 5$, where $a \neq b$, then find $f(x)$.

Let the given equation be
af(x)+bf(1x)=5x5a f(x) + b f(\frac{1}{x}) = \frac{5}{x} - 5 ...(1)
Replacing xx with 1x\frac{1}{x}, we get
af(1x)+bf(x)=5x5a f(\frac{1}{x}) + b f(x) = 5x - 5 ...(2)
Multiplying equation (1) by aa, and equation (2) by bb, we have
a2f(x)+abf(1x)=a(5x5)a^2 f(x) + ab f(\frac{1}{x}) = a(\frac{5}{x} - 5)
b2f(x)+abf(1x)=b(5x5)b^2 f(x) + ab f(\frac{1}{x}) = b(5x - 5)
Subtracting the two equations, we get
(a2b2)f(x)=a(5x5)b(5x5)(a^2 - b^2) f(x) = a(\frac{5}{x} - 5) - b(5x - 5)
(a2b2)f(x)=5ax5a5bx+5b(a^2 - b^2) f(x) = \frac{5a}{x} - 5a - 5bx + 5b
f(x)=5ax5a5bx+5ba2b2f(x) = \frac{\frac{5a}{x} - 5a - 5bx + 5b}{a^2 - b^2}
f(x)=5a5ax5bx2+5bxx(a2b2)f(x) = \frac{5a - 5ax - 5bx^2 + 5bx}{x(a^2 - b^2)}
f(x)=5(aaxbx2+bx)x(a2b2)f(x) = \frac{5(a - ax - bx^2 + bx)}{x(a^2 - b^2)}
1

2. If $f(x) = \frac{9}{5}x+32$, find $f(-10)$.

f(10)=95(10)+32=9(2)+32=18+32=14f(-10) = \frac{9}{5}(-10) + 32 = 9(-2) + 32 = -18 + 32 = 14.
1

3. If $f(x) = x^3$, find the value of $\frac{f(5)-f(1)}{5-1}$.

f(5)=53=125f(5) = 5^3 = 125.
f(1)=13=1f(1) = 1^3 = 1.
f(5)f(1)51=125151=1244=31\frac{f(5)-f(1)}{5-1} = \frac{125-1}{5-1} = \frac{124}{4} = 31.

3. Final Answer

7. (i) $f(\frac{1}{2}) = \frac{1}{2}$ (ii) $f(-2) = 4$ (iii) $f(\sqrt{3}) = \frac{\sqrt{3}}{3}$ (iv) $f(-\sqrt{3}) = 3$

8. $f(x) + f(\frac{1}{x}) = 0$

9. $f(\tan \theta) = \sin 2\theta$

1

0. (i) $f(\frac{1}{x}) = -f(x)$ (ii) $f(-\frac{1}{x}) = \frac{1}{f(x)}$

1

1. $f(x) = \frac{5(a - ax - bx^2 + bx)}{x(a^2 - b^2)}$

1

2. $f(-10) = 14$

1

3. $\frac{f(5)-f(1)}{5-1} = 31$

Related problems in "Algebra"

The image contains a set of equations. The task is to solve each equation for the variable $a$. I wi...

EquationsSolving EquationsLinear EquationsVariable Isolation
2025/7/1

The problem consists of several equations. We need to solve for the variable $a$ in each equation. ...

Linear EquationsSolving Equations
2025/7/1

We are given the equation $C - a = E$ and are asked to solve for $a$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The problem is to solve the equation $C - a = E$ for $C$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The image presents a series of algebraic equations. I will solve problem number 41, which asks to so...

Linear EquationsSolving EquationsVariables
2025/7/1

We are given the function $y = a \sin \theta + b \cos \theta$ where $0 \le \theta < 2\pi$. The funct...

TrigonometryMaximum and Minimum ValuesTrigonometric FunctionsAmplitude and Phase Shift
2025/6/30

The problem has two parts. Part 1: Given a quadratic equation $7x^2 - 2x + 1 = 0$ with roots $a$ and...

Quadratic EquationsRoots of EquationsGeometric ProgressionSequences and Series
2025/6/30

The problem asks to simplify the expression $\sqrt{48} - \sqrt{75} + \sqrt{12}$ and find the correct...

SimplificationRadicalsSquare Roots
2025/6/30

The problem asks to find the analytical expression of the function $f(x)$ whose graph is shown. The ...

Piecewise FunctionsParabolaLinear EquationsHyperbolaFunction Analysis
2025/6/29

The graph of a function $f(x)$ is given. The function consists of a parabolic arc with vertex $V$, a...

Piecewise FunctionsQuadratic FunctionsLinear FunctionsRational FunctionsFunction Analysis
2025/6/29