The problem asks to find the value of the expression $\frac{6^{1/4} 294^{1/4}}{216^{1/4}}$.

AlgebraExponentsRadicalsSimplification
2025/3/19

1. Problem Description

The problem asks to find the value of the expression 61/42941/42161/4\frac{6^{1/4} 294^{1/4}}{216^{1/4}}.

2. Solution Steps

We want to simplify the expression 61/42941/42161/4\frac{6^{1/4} 294^{1/4}}{216^{1/4}}.
First, we can combine the terms in the numerator:
61/42941/4=(6294)1/46^{1/4} \cdot 294^{1/4} = (6 \cdot 294)^{1/4}.
Now, let's calculate 6294=6(649)=3649=6272=(67)2=422=17646 \cdot 294 = 6 \cdot (6 \cdot 49) = 36 \cdot 49 = 6^2 \cdot 7^2 = (6 \cdot 7)^2 = 42^2 = 1764.
So, 61/42941/4=(1764)1/4=(422)1/4=422/4=421/2=426^{1/4} \cdot 294^{1/4} = (1764)^{1/4} = (42^2)^{1/4} = 42^{2/4} = 42^{1/2} = \sqrt{42}.
Next, we need to find the value of 2161/4216^{1/4}.
Note that 216=63216 = 6^3. Thus, 2161/4=(63)1/4=63/4216^{1/4} = (6^3)^{1/4} = 6^{3/4}.
Therefore, the expression becomes:
61/42941/42161/4=(6294)1/4(63)1/4=17641/463/4=(422)1/463/4=421/263/4=(67)1/263/4=61/271/263/4=61/23/471/2=61/471/2=71/261/4=764\frac{6^{1/4} 294^{1/4}}{216^{1/4}} = \frac{(6 \cdot 294)^{1/4}}{(6^3)^{1/4}} = \frac{1764^{1/4}}{6^{3/4}} = \frac{(42^2)^{1/4}}{6^{3/4}} = \frac{42^{1/2}}{6^{3/4}} = \frac{(6 \cdot 7)^{1/2}}{6^{3/4}} = \frac{6^{1/2} 7^{1/2}}{6^{3/4}} = 6^{1/2 - 3/4} 7^{1/2} = 6^{-1/4} 7^{1/2} = \frac{7^{1/2}}{6^{1/4}} = \frac{\sqrt{7}}{\sqrt[4]{6}}
This is not one of the answer options. Let's re-evaluate.
We have 61/42941/42161/4=(6294216)1/4\frac{6^{1/4} 294^{1/4}}{216^{1/4}} = \left(\frac{6 \cdot 294}{216}\right)^{1/4}.
6294216=6649636=6677666=496\frac{6 \cdot 294}{216} = \frac{6 \cdot 6 \cdot 49}{6 \cdot 36} = \frac{6 \cdot 6 \cdot 7 \cdot 7}{6 \cdot 6 \cdot 6} = \frac{49}{6}.
So, we want to find the value of (496)1/4=(726)1/4=72/461/4=71/261/4=764\left(\frac{49}{6}\right)^{1/4} = \left(\frac{7^2}{6}\right)^{1/4} = \frac{7^{2/4}}{6^{1/4}} = \frac{7^{1/2}}{6^{1/4}} = \frac{\sqrt{7}}{\sqrt[4]{6}}.
Let's check if 496\frac{49}{6} is equivalent to any of the other options.
61/42941/42161/4=(6294216)1/4=(1764216)1/4=(496)1/4\frac{6^{1/4} 294^{1/4}}{216^{1/4}} = \left(\frac{6 \cdot 294}{216}\right)^{1/4} = \left(\frac{1764}{216}\right)^{1/4} = \left(\frac{49}{6}\right)^{1/4}.
However, 294=6×49=6×72294 = 6 \times 49 = 6 \times 7^2.
So 6294216=6(649)63=627263=726=496\frac{6 \cdot 294}{216} = \frac{6 \cdot (6 \cdot 49)}{6^3} = \frac{6^2 \cdot 7^2}{6^3} = \frac{7^2}{6} = \frac{49}{6}.
(496)1/41.68\left(\frac{49}{6}\right)^{1/4} \approx 1.68.
Let's revisit the provided options:
(a) 231/40.90\frac{2}{3}^{1/4} \approx 0.90
(b) 341/40.96\frac{3}{4}^{1/4} \approx 0.96
(c) 321/41.10\frac{3}{2}^{1/4} \approx 1.10
(d) 431/41.07\frac{4}{3}^{1/4} \approx 1.07
61/4(649)1/463/4=61/461/4491/463/4=62/4(72)1/463/4=61/271/263/4=6763/4=4263/4\frac{6^{1/4} \cdot (6 \cdot 49)^{1/4}}{6^{3/4}} = \frac{6^{1/4} \cdot 6^{1/4} \cdot 49^{1/4}}{6^{3/4}} = \frac{6^{2/4} \cdot (7^2)^{1/4}}{6^{3/4}} = \frac{6^{1/2} \cdot 7^{1/2}}{6^{3/4}} = \frac{\sqrt{6} \sqrt{7}}{6^{3/4}} = \frac{\sqrt{42}}{6^{3/4}}.
(496)1/4=(726)1/4=71/261/4=764\left(\frac{49}{6}\right)^{1/4} = \left(\frac{7^2}{6}\right)^{1/4} = \frac{7^{1/2}}{6^{1/4}} = \frac{\sqrt{7}}{\sqrt[4]{6}}.

3. Final Answer

None of the given options are correct. The answer is (496)1/4\left(\frac{49}{6}\right)^{1/4} or 764\frac{\sqrt{7}}{\sqrt[4]{6}}.

Related problems in "Algebra"

The problem asks to find the length and width of a rectangle that maximizes the area.

OptimizationAreaPerimeterCalculusCompleting the Square
2025/4/9

An electrician's starting salary is $62,300 per year. Their salary increases by 6% each year. a) We ...

Exponential GrowthSalary CalculationFinancial MathematicsFormula Application
2025/4/9

We need to find the absolute value and the square roots of the following complex numbers: a. $3 + 2i...

Complex NumbersAbsolute ValueSquare Roots
2025/4/9

The problem asks us to find the quotient of the given complex numbers and express the answer in the ...

Complex NumbersComplex Number DivisionComplex Conjugate
2025/4/9

The problem asks us to simplify several expressions involving complex numbers. The operations includ...

Complex NumbersArithmetic OperationsComplex Number MultiplicationComplex Number AdditionComplex Number SubtractionComplex Number Squaring
2025/4/9

The problem asks us to add two complex numbers: $(3 + i\sqrt{2})$ and $(-4 + i\sqrt{2})$.

Complex NumbersAddition
2025/4/9

The problem is to add two complex numbers: $(\frac{1}{2} + \frac{3}{4}i)$ and $(\frac{3}{2} + \frac{...

Complex NumbersAddition
2025/4/9

We are asked to simplify the expression $x^2(x+2)^2 - 7x(x+2)^2 + 10(x+2)^2$.

PolynomialsFactoringAlgebraic Manipulation
2025/4/9

The problem is to factor the quadratic expression $3x^2 - 4x - 4$ completely.

Quadratic EquationsFactoringAlgebraic Manipulation
2025/4/9

The problem is to simplify the expression $\frac{-6x^4y^3 + 5x^2y^3 - 3x^3y}{-3x^2y}$.

PolynomialsSimplificationExponents
2025/4/9