The problem asks us to evaluate the sum $\sum_{n=4}^{9} (n-1)$.

ArithmeticSummationArithmetic Series
2025/5/7

1. Problem Description

The problem asks us to evaluate the sum n=49(n1)\sum_{n=4}^{9} (n-1).

2. Solution Steps

We can expand the summation as follows:
n=49(n1)=(41)+(51)+(61)+(71)+(81)+(91)\sum_{n=4}^{9} (n-1) = (4-1) + (5-1) + (6-1) + (7-1) + (8-1) + (9-1)
n=49(n1)=3+4+5+6+7+8\sum_{n=4}^{9} (n-1) = 3 + 4 + 5 + 6 + 7 + 8
Now, we add the numbers together:
3+4+5+6+7+8=7+5+6+7+8=12+6+7+8=18+7+8=25+8=333 + 4 + 5 + 6 + 7 + 8 = 7 + 5 + 6 + 7 + 8 = 12 + 6 + 7 + 8 = 18 + 7 + 8 = 25 + 8 = 33
Alternatively, we can use the formula for the sum of an arithmetic series. First, let k=n1k = n-1. Then, when n=4n=4, k=41=3k = 4-1 = 3, and when n=9n=9, k=91=8k=9-1=8. Thus we have
n=49(n1)=k=38k\sum_{n=4}^{9} (n-1) = \sum_{k=3}^{8} k
We can calculate k=18k\sum_{k=1}^{8} k and k=12k\sum_{k=1}^{2} k, and subtract the second from the first.
The sum of the first nn integers is given by
k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
So k=18k=8(8+1)2=8(9)2=722=36\sum_{k=1}^{8} k = \frac{8(8+1)}{2} = \frac{8(9)}{2} = \frac{72}{2} = 36
And k=12k=2(2+1)2=2(3)2=3\sum_{k=1}^{2} k = \frac{2(2+1)}{2} = \frac{2(3)}{2} = 3
So k=38k=k=18kk=12k=363=33\sum_{k=3}^{8} k = \sum_{k=1}^{8} k - \sum_{k=1}^{2} k = 36 - 3 = 33

3. Final Answer

33