We can expand the summation as follows:
∑n=49(n−1)=(4−1)+(5−1)+(6−1)+(7−1)+(8−1)+(9−1) ∑n=49(n−1)=3+4+5+6+7+8 Now, we add the numbers together:
3+4+5+6+7+8=7+5+6+7+8=12+6+7+8=18+7+8=25+8=33 Alternatively, we can use the formula for the sum of an arithmetic series. First, let k=n−1. Then, when n=4, k=4−1=3, and when n=9, k=9−1=8. Thus we have ∑n=49(n−1)=∑k=38k We can calculate ∑k=18k and ∑k=12k, and subtract the second from the first. The sum of the first n integers is given by ∑k=1nk=2n(n+1) So ∑k=18k=28(8+1)=28(9)=272=36 And ∑k=12k=22(2+1)=22(3)=3 So ∑k=38k=∑k=18k−∑k=12k=36−3=33