We need to evaluate the sum $\sum_{i=4}^{20} (2i - 5)$.

AlgebraSummationSeriesArithmetic Series
2025/5/7

1. Problem Description

We need to evaluate the sum i=420(2i5)\sum_{i=4}^{20} (2i - 5).

2. Solution Steps

We can split the summation into two separate summations:
i=420(2i5)=i=4202ii=4205\sum_{i=4}^{20} (2i - 5) = \sum_{i=4}^{20} 2i - \sum_{i=4}^{20} 5
=2i=420ii=4205= 2 \sum_{i=4}^{20} i - \sum_{i=4}^{20} 5
We can rewrite the first summation by using the formula for the sum of the first nn integers:
i=1ni=n(n+1)2\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
Therefore, i=420i=i=120ii=13i=20(20+1)23(3+1)2=20(21)23(4)2=4202122=2106=204\sum_{i=4}^{20} i = \sum_{i=1}^{20} i - \sum_{i=1}^{3} i = \frac{20(20+1)}{2} - \frac{3(3+1)}{2} = \frac{20(21)}{2} - \frac{3(4)}{2} = \frac{420}{2} - \frac{12}{2} = 210 - 6 = 204
The second summation is simply the sum of a constant, 5, from i=4i=4 to i=20i=20. There are 204+1=1720-4+1 = 17 terms in this summation. Thus,
i=4205=5×17=85\sum_{i=4}^{20} 5 = 5 \times 17 = 85
Substituting these values back into our original equation:
2i=420ii=4205=2(204)85=40885=3232 \sum_{i=4}^{20} i - \sum_{i=4}^{20} 5 = 2(204) - 85 = 408 - 85 = 323

3. Final Answer

323

Related problems in "Algebra"