We are asked to expand the expression $y = (-2x^4 - 3)(-2x^2 + 1)$.AlgebraPolynomial ExpansionDistributive PropertyFOIL method2025/5/81. Problem DescriptionWe are asked to expand the expression y=(−2x4−3)(−2x2+1)y = (-2x^4 - 3)(-2x^2 + 1)y=(−2x4−3)(−2x2+1).2. Solution StepsWe use the distributive property (also known as the FOIL method) to expand the expression.y=(−2x4−3)(−2x2+1)y = (-2x^4 - 3)(-2x^2 + 1)y=(−2x4−3)(−2x2+1)y=(−2x4)(−2x2)+(−2x4)(1)+(−3)(−2x2)+(−3)(1)y = (-2x^4)(-2x^2) + (-2x^4)(1) + (-3)(-2x^2) + (-3)(1)y=(−2x4)(−2x2)+(−2x4)(1)+(−3)(−2x2)+(−3)(1)y=4x6−2x4+6x2−3y = 4x^6 - 2x^4 + 6x^2 - 3y=4x6−2x4+6x2−33. Final Answery=4x6−2x4+6x2−3y = 4x^6 - 2x^4 + 6x^2 - 3y=4x6−2x4+6x2−3