The problem asks to analyze the function $y = 5 \cdot (\frac{1}{2})^x$.

AlgebraExponential FunctionsFunction AnalysisExponential DecayFunction Evaluation
2025/5/8

1. Problem Description

The problem asks to analyze the function y=5(12)xy = 5 \cdot (\frac{1}{2})^x.

2. Solution Steps

To understand the behavior of the function y=5(12)xy = 5 \cdot (\frac{1}{2})^x, we can calculate some values for different values of xx.
When x=0x = 0, we have y=5(12)0=51=5y = 5 \cdot (\frac{1}{2})^0 = 5 \cdot 1 = 5.
When x=1x = 1, we have y=5(12)1=512=2.5y = 5 \cdot (\frac{1}{2})^1 = 5 \cdot \frac{1}{2} = 2.5.
When x=2x = 2, we have y=5(12)2=514=1.25y = 5 \cdot (\frac{1}{2})^2 = 5 \cdot \frac{1}{4} = 1.25.
When x=3x = 3, we have y=5(12)3=518=0.625y = 5 \cdot (\frac{1}{2})^3 = 5 \cdot \frac{1}{8} = 0.625.
When x=1x = -1, we have y=5(12)1=52=10y = 5 \cdot (\frac{1}{2})^{-1} = 5 \cdot 2 = 10.
When x=2x = -2, we have y=5(12)2=54=20y = 5 \cdot (\frac{1}{2})^{-2} = 5 \cdot 4 = 20.
When x=3x = -3, we have y=5(12)3=58=40y = 5 \cdot (\frac{1}{2})^{-3} = 5 \cdot 8 = 40.
The function is an exponential decay. As xx increases, yy approaches

0. As $x$ decreases, $y$ increases without bound. The y-intercept is $(0, 5)$.

3. Final Answer

The function is y=5(12)xy = 5 \cdot (\frac{1}{2})^x. It is an exponential decay function.