The problem gives a matrix equation and asks us to find the values of $p$ and $q$. The equation is: $4 \begin{bmatrix} p & -2 \\ 3 & -6 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -6 & -15 \\ -3 & q \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ 13 & -20 \end{bmatrix}$

AlgebraMatricesMatrix EquationsLinear AlgebraScalar MultiplicationMatrix Subtraction
2025/5/9

1. Problem Description

The problem gives a matrix equation and asks us to find the values of pp and qq. The equation is:
4[p236]13[6153q]=[1431320]4 \begin{bmatrix} p & -2 \\ 3 & -6 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -6 & -15 \\ -3 & q \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ 13 & -20 \end{bmatrix}

2. Solution Steps

First, we distribute the scalars to the matrices:
[4p81224][251q3]=[1431320]\begin{bmatrix} 4p & -8 \\ 12 & -24 \end{bmatrix} - \begin{bmatrix} -2 & -5 \\ -1 & \frac{q}{3} \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ 13 & -20 \end{bmatrix}
Next, we subtract the two matrices on the left-hand side:
[4p(2)8(5)12(1)24q3]=[1431320]\begin{bmatrix} 4p - (-2) & -8 - (-5) \\ 12 - (-1) & -24 - \frac{q}{3} \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ 13 & -20 \end{bmatrix}
[4p+231324q3]=[1431320]\begin{bmatrix} 4p + 2 & -3 \\ 13 & -24 - \frac{q}{3} \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ 13 & -20 \end{bmatrix}
Now, we can equate the corresponding entries of the two matrices:
4p+2=144p + 2 = 14
24q3=20-24 - \frac{q}{3} = -20
From the first equation, we solve for pp:
4p=1424p = 14 - 2
4p=124p = 12
p=124p = \frac{12}{4}
p=3p = 3
From the second equation, we solve for qq:
q3=20+24-\frac{q}{3} = -20 + 24
q3=4-\frac{q}{3} = 4
q=12q = -12

3. Final Answer

p=3p = 3
q=12q = -12

Related problems in "Algebra"

The image contains a set of equations. The task is to solve each equation for the variable $a$. I wi...

EquationsSolving EquationsLinear EquationsVariable Isolation
2025/7/1

The problem consists of several equations. We need to solve for the variable $a$ in each equation. ...

Linear EquationsSolving Equations
2025/7/1

We are given the equation $C - a = E$ and are asked to solve for $a$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The problem is to solve the equation $C - a = E$ for $C$.

Equation SolvingLinear EquationsVariable Isolation
2025/7/1

The image presents a series of algebraic equations. I will solve problem number 41, which asks to so...

Linear EquationsSolving EquationsVariables
2025/7/1

We are given the function $y = a \sin \theta + b \cos \theta$ where $0 \le \theta < 2\pi$. The funct...

TrigonometryMaximum and Minimum ValuesTrigonometric FunctionsAmplitude and Phase Shift
2025/6/30

The problem has two parts. Part 1: Given a quadratic equation $7x^2 - 2x + 1 = 0$ with roots $a$ and...

Quadratic EquationsRoots of EquationsGeometric ProgressionSequences and Series
2025/6/30

The problem asks to simplify the expression $\sqrt{48} - \sqrt{75} + \sqrt{12}$ and find the correct...

SimplificationRadicalsSquare Roots
2025/6/30

The problem asks to find the analytical expression of the function $f(x)$ whose graph is shown. The ...

Piecewise FunctionsParabolaLinear EquationsHyperbolaFunction Analysis
2025/6/29

The graph of a function $f(x)$ is given. The function consists of a parabolic arc with vertex $V$, a...

Piecewise FunctionsQuadratic FunctionsLinear FunctionsRational FunctionsFunction Analysis
2025/6/29