The problem asks to expand the expression $(x - 2y + 3z)^2$.

AlgebraAlgebraic ExpansionTrinomial ExpansionPolynomials
2025/5/10

1. Problem Description

The problem asks to expand the expression (x2y+3z)2(x - 2y + 3z)^2.

2. Solution Steps

We need to expand the square of the trinomial (x2y+3z)(x - 2y + 3z). We can use the formula:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc.
In our case, a=xa=x, b=2yb=-2y, and c=3zc=3z.
So, we have:
(x2y+3z)2=(x)2+(2y)2+(3z)2+2(x)(2y)+2(x)(3z)+2(2y)(3z)(x - 2y + 3z)^2 = (x)^2 + (-2y)^2 + (3z)^2 + 2(x)(-2y) + 2(x)(3z) + 2(-2y)(3z)
=x2+4y2+9z24xy+6xz12yz= x^2 + 4y^2 + 9z^2 - 4xy + 6xz - 12yz

3. Final Answer

The expanded form of (x2y+3z)2(x - 2y + 3z)^2 is x2+4y2+9z24xy+6xz12yzx^2 + 4y^2 + 9z^2 - 4xy + 6xz - 12yz.