First, let's find the second partial derivative of y with respect to t, ∂t2∂2y. Let u=x−ct and v=x+ct. Then y=21[f(u)+f(v)]. ∂t∂y=21[f′(u)∂t∂u+f′(v)∂t∂v]=21[f′(x−ct)(−c)+f′(x+ct)(c)]=2c[−f′(x−ct)+f′(x+ct)] ∂t2∂2y=∂t∂(2c[−f′(x−ct)+f′(x+ct)])=2c[−f′′(x−ct)(−c)+f′′(x+ct)(c)]=2c2[f′′(x−ct)+f′′(x+ct)] Next, let's find the second partial derivative of y with respect to x, ∂x2∂2y. ∂x∂y=21[f′(u)∂x∂u+f′(v)∂x∂v]=21[f′(x−ct)(1)+f′(x+ct)(1)]=21[f′(x−ct)+f′(x+ct)] ∂x2∂2y=∂x∂(21[f′(x−ct)+f′(x+ct)])=21[f′′(x−ct)(1)+f′′(x+ct)(1)]=21[f′′(x−ct)+f′′(x+ct)] Now, let's check if the wave equation is satisfied:
∂t2∂2y=c2∂x2∂2y 2c2[f′′(x−ct)+f′′(x+ct)]=c2(21[f′′(x−ct)+f′′(x+ct)]) 2c2[f′′(x−ct)+f′′(x+ct)]=2c2[f′′(x−ct)+f′′(x+ct)] The equation holds true. Therefore, y(x,t)=21[f(x−ct)+f(x+ct)] satisfies the wave equation.